检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:毕海婷[1] BI Haiting(Department of Electrical and Electronic Engineering,Yantai Vocational College,Yantai 264670,China)
机构地区:[1]烟台职业学院电气与电子工程系,山东烟台264670
出 处:《成都工业学院学报》2024年第5期41-46,共6页Journal of Chengdu Technological University
基 金:山东省职业教育教学改革研究项目(2015042)。
摘 要:移动目标定位相比较于固定目标定位具有高精度、低时延和低能耗要求。在智能化仓储场景下,自动引导车(AGV)移动设备定位直接关系到仓储服务的效率。基于灰色模型(GM)预测优化的场景匹配,对蒙特卡罗定位(MCL)算法进行了改进优化,降低了传统MCL算法的预测迭代频次,提高了定位传感器网络拓扑的稳定性和响应的速度。将灰色模型-蒙特卡罗定位(GM-MCL)和传统MCL进行对比,结果表明GM-MCL算法在步长为20的条件下误差率低至0.13,而MCL算法和质心定位算法的误差分别为0.16和0.25。同时,当锚点步长增加到30时,误差率更是降低至0.06。在不同运动速度和加速度条件下,相较于传统的MCL算法,其误差率也降低了15%左右,同时随着样本容量的增加GM-MCL算法的迭代次数也更少。综合而言,GM-MCL算法能够有效地提高智能化仓储场景中AGV移动设备的定位性能。Compared to fixed target positioning,moving target positioning requires high precision,low delay and low energy consumption.In the intelligent storage scenarios,the positioning of the mobile equipment of the automatic guided vehicle(AGV)is directly related to the efficiency of the storage service.Monte-Carlo localization(MCL)algorithm was enhanced and optimized based on the scene matching of grey model(GM)prediction optimization,which reduces the frequency of prediction iteration of traditional MCL algorithm and improves the stability and response speed of positioning sensor network topology.A comparison between the grey model-Monte-Carlo localization(GM-MCL)and the traditional MCL indicates that the error rate of GM-MCL is as low as 0.13 under the condition of 20 steps,whereas the error rates of MCL and centroid positioning are 0.16 and 0.25,respectively.Furthermore,when the anchor step size increases to 30,the error rate of GM-MCL decreases to 0.06.Under various velocities and accelerations,the error rate of GM-MCL algorithm is also reduced by approximately 15%compared to the traditional MCL algorithm,and the number of iterations of GM-MCL algorithm is also less with the increase of sample size.In summary,the GM-MCL algorithm can effectively enhance the positioning performance of AGV mobile devices in intelligent warehousing scenarios.
分 类 号:TP391.44[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145