检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘合国 张继平[2] 赵静[1,3] 徐行忠 廖军 LIU Heguo;ZHANG Jiping;ZHAO Jing;XU Xingzhong;LIAO Jun(School of Mathematics and Statistics,Hainan University,Haikou 570228,China;School of Mathematical Sciences,Peking University,Beijing 100871,China;Key Laboratory of Engineering Modeling and Statistical Computation of Hainan Province,Hainan University,Haikou 570228,China;School of Mathematics and Statistics,Hubei University,Wuhan 430062,China)
机构地区:[1]海南大学数学与统计学院,海口570228 [2]北京大学数学科学学院,北京100871 [3]海南省工程建模与统计计算重点实验室,海口570228 [4]湖北大学数学与统计学学院,武汉430062
出 处:《数学年刊(A辑)》2024年第2期185-204,共20页Chinese Annals of Mathematics
基 金:国家自然科学基金(No.11131001,No.11971155,No.12071117,No.12171142);湖北省自然科学基金(No.2021CFB479)的资助。
摘 要:剩余有限群也被称为是可以有限逼近的群,其特性常常由它的有限商群的性质决定.Seksenbaev定理断言:若对无限多个素数p,多重循环群G都是剩余有限p-群,则G是有限生成的无挠幂零群.Robinson把该定理推广为:设G是有限秩的可解群,若对无限多个素数p,G都是剩余有限p-群,则G是有限秩的无挠幂零群.这是无限可解群里的两个经典结果.本文证明了有关无限可解群的两个剩余有限性定理.本文的结果完善了Seksenbaev-Robinson定理.The residually finite group is also known as finitely approximable group,and its properties are often determined by the properties of its finite quotient groups.The Seksenbaev theorem states that if a polycyclic group G is a residually finite p-group for infinitely many primes p,then G is a finitely generated torsion-free nilpotent group.Robinson generalizes this theorem to solvable groups:If a solvable group G of finite rank is a residually finite p-group for infinitely many primes p,then it is a torsion-free nilpotent group.These are two classical results in infinite solvable groups.This paper proves two residual finiteness theorems for infinite solvable groups.The results of this paper improve the Seksenbaev-Robinson theorem.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.19.255.255