检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:席志国 刘光辉[1,2,3] XI Zhiguo;LIU Guanghui(College of Information and Control Engineering,Xi’an University of Architecture and Technology,Xi’an 710055;Higher Education Key Laboratory of Construction Robot in Shaanxi Province,Xi’an 710055;Xi’an Key Laboratory of Intelligent Technology for Building Manufacturing,Xi’an 710055)
机构地区:[1]西安建筑科技大学信息与控制工程学院,西安710055 [2]建筑机器人陕西省高等学校重点实验室,西安710055 [3]西安市建筑制造智动化技术重点实验室,西安710055
出 处:《高技术通讯》2024年第9期945-959,共15页Chinese High Technology Letters
基 金:国家自然科学基金(52278125)资助项目。
摘 要:针对高密人群图像中细节信息丢失、背景噪声易与人群特征混淆以及网络模型复杂度高等问题,本文提出一种基于区域信息聚合的轻量化人群计数方法。首先,为获取高密图像中细粒度化的多尺度特征,设计了基于通道激活的多尺度特征提取模块,此模块通过引入Ghost卷积构建了层间分级类残差连接结构,同时对每级特征辅以通道激活,以轻量化的方式实现了网络感受野的逐级扩张。其次,提出一种自注意力区域信息聚合模块获取不同尺度区域的特征信息,该模块通过轻量级自注意力机制分别从通道和空间维度集成区域信息,增强对人群特征的关注,从而弱化背景噪声对计数的影响。最后,考虑到原始计数损失收敛过程中的不稳定性,在DM-Count损失的基础上引入一种新型计数损失,提高了模型稳定性和计数敏感性,进一步提升了计数性能。在Shanghai Tech、UCFQNRF、JHU-CROWD++以及NWPU-Crowd这4个公开数据集的实验结果表明,本文所提方法对比其他主流轻量级人群计数方法有一定的提升,且模型参数量保持在较低水平。Aiming at the problems of loss of detailed information in high-density crowd images,background noise being easily confused with crowd features,and high complexity of network models,this article proposes a lightweight crowd counting method based on regional information aggregation.First,a multi-scale feature extraction module based on channel activation is designed to obtain fine-grained multi-scale features in high-density images.This module introduces Ghost convolution to construct an inter-layer hierarchical residual connection structure,and supplementing each level of features with channel activation,achieving a gradual expansion of the network’s receptive field in a lightweight manner.Secondly,a self-attention region information aggregation module is proposed to obtain feature information from regions of different scales.This module integrates region information from both channel and spatial dimensions using a lightweight self-attention mechanism,enhancing focus on crowd features to weaken the impact of background noise on counting.Finally,considering the instability in the convergence process of the original count loss,a new counting loss is introduced based on the DM-Count loss,which improves the model stability and counting sensitivity,and further improves the counting performance.Experimental results on four public data sets of Shanghai Tech,UCF-QNRF,JHU-CROWD++,and NWPU-Crowd show that the method proposed in this thesis has a specific improvement compared with other mainstream lightweight crowd counting methods,and the number of model parameters remains relatively low-level.
关 键 词:人群计数 区域信息聚合 轻量化 自注意力 损失函数
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49