检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈一帆 张志强[1,2] 丁敬达 谢瑞霞 Chen Yifan;Zhang Zhiqiang;Ding Jingda;Xie Ruixia(National Science Library(Chengdu),Chinese Academy of Sciences,Chengdu 610299;Department of Information Resources Management,School of Economics and Management,University of Chinese Academy of Sciences,Beijing 100190;China Academy of Science and Education Evaluation,Hangzhou Dianzi University,Hangzhou 310018;School of Cultural Heritage and Information Management,Shanghai University,Shanghai 201900)
机构地区:[1]中国科学院成都文献情报中心,成都610299 [2]中国科学院大学经济与管理学院信息资源管理系,北京100190 [3]杭州电子科技大学中国科教评价研究院,杭州310018 [4]上海大学文化遗产与信息管理学院,上海201900
出 处:《图书情报工作》2024年第18期134-146,共13页Library and Information Service
摘 要:[目的/意义]多源数据特征级融合是将多源或多维数据中描述研究对象的多层次特征进行融合的方法手段,用于揭示数据内在的关联性与互补性,从而提供更全面、更精确的分析视角。梳理相关研究对于丰富科研人员研究手段、促进情报研究的智能化具有重要意义。[方法/过程]在阐述特征级融合研究的重要性和必要性的基础上,梳理图书情报领域特征级融合方法近10年的研究成果。[结果/结论]目前图书情报领域所运用的多源数据特征级融合方法可归纳为基于线性加权的融合方法、基于耦合的融合方法以及基于神经网络模型的融合方法三类。同时总结各种特征级融合方法的适应场景以及图书情报领域在使用这些方法中所暴露的问题,并结合学术环境展望未来的发展路径。[Purpose/Significance]Multi-source data feature-level fusion is a method devised for the extraction and integration of multi-level features from diverse and multidimensional data sources,which is used to reveal the intrinsic correlations and complementarities of the data.This provides a more comprehensive and precise analytical perspective.The review of relevant research is of great significance to enrich research methods and promote the intelligent process of information science research.[Method/Process]On the basis of elaborating the importance and necessity of feature-level fusion research,this paper compiled the research results of feature-level fusion methods in the field of library and information science in the past 10 years.[Result/Conclusion]At present,the multisource data feature-level fusion methods used in the field of library and information science can be summarized into three categories:linear weighted fusion methods,feature-coupled fusion methods and neural network model based fusion methods.It demonstrates the applicable scenarios of various feature-level fusion methods and analyzes the problems exposed in the use of these methods in the field of library and information science,and prospects its future development in the academic environment.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222