检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:嵇静婵[1] JI Jingchan(Liuzhou Railway Vocational and Technical College,Liuzhou City,Guangxi Province 545000)
出 处:《长江信息通信》2024年第9期193-195,共3页Changjiang Information & Communications
摘 要:为探索机器学习算法在提升5G网络分流效率中的应用,本研究深度探究机器学习算法在5G网络分流提升中的应用。通过深度学习、支持向量机、随机森林和决策树等算法,实现了流量预测、网络资源优化和异常检测。研究发现,这些算法能有效预测流量趋势,提高资源配置效率,并在异常流量检测和安全威胁分析方面表现突出。测试结果显示,机器学习算法显著提升了5G网络管理的效率和安全性。因此,进一步探索和优化机器学习算法在5G网络应用中具有重要价值。With the rapid development of 5G networks,the high bandwidth and low latency characteristics provide users with rich nctwork services,but also bring challenges to traffic management and nctwork resource allocation.Machine learning,especially its applications in time serics analysis,traffic classification,resource optimization,and anomaly detection,provides effective technical support for improving 5G network offloading.This article first outlines the technical requirements for 5G network offloading,and provides a detailed introduction to the design of a machine learning based 5G network offloading enhancement algorithm,including traffic prediction using neural networks,real-time traffic classification using support vector machines,optimization of resource allocation strategies for random forests,load balancing for decision trees,abnormal traffic detcction using deep learning methods,and security thrcat analysis using cnscmble learning methods.Finally,through testing and evaluation of these algorithms,their effectiveness in improving the efficiency of 5G network routing was verified.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222