检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈肖潇 赵嘉毅 Xiaoxiao Chen;Jiayi Zhao(School of Energy and Power Engineering,University of Shanghai for Science and Technology,Shanghai)
出 处:《建模与仿真》2024年第5期5513-5526,共14页Modeling and Simulation
基 金:国家自然科学基金(12002212)。
摘 要:光滑粒子动力学方法(Smoothed Particle Hydrodynamics,SPH)所具备的无网格特性使其摆脱了网格划分过程,在处理复杂几何边界上具有潜在优势。然而,传统SPH受限于空间微分高阶一致性缺失,无法实现高精度求解。本文基于SPH粒子的局部泰勒展开,通过邻域粒子空间矩阵求解,实现了满足高阶一致性的SPH微分算子算法。通过一、二维函数证明了该算法在任意粒子分布中微分2、3、4阶一致性。随后,基于热传导方程、Burgers方程、纳维–斯托克斯方程等偏微分方程证明了该算法求解空间算子的精确性与稳定性。基于局部泰勒展开的SPH算法为无网格方法在复杂几何域的高精度数值求解提供了一种可行方法。The meshless nature of Smooth Particle Dynamics(SPH)method eliminates the need for mesh partitioning and has potential advantages in handling complex geometric boundaries.However,tradi-tional SPH is limited by the lack of high-order consistency in spatial differentiation and cannot achieve high-precision solutions.This article is based on the local Taylor expansion of SPH particles,and solves the SPH differential operator algorithm that satisfies high-order consistency through the neighborhood particle space matrix.The algorithm has been proven to have 2nd,3rd,and 4th order consistency in differentiation in any particle distribution through one-dimensional and two-dimensional functions.Subsequently,the accuracy and stability of the algorithm for solving spatial operators were demonstrated based on partial differential equations such as the heat conduction equation,Burgers equation,and Navier Stokes equation.The SPH algorithm based on local Taylor expansion provides a feasible method for high-precision numerical solutions in complex geometric domains.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.139.248