基于SCN数据模型的SISO非线性自适应控制  

Adaptive Control of SISO Nonlinear System Using Data-driven SCN Model

在线阅读下载全文

作  者:代伟 张政煊 杨春雨 马小平 DAI Wei;ZHANG Zheng-Xuan;YANG Chun-Yu;MA Xiao-Ping(School of Information and Control Engineering,China University of Mining and Technology,Xuzhou 221116;School of Automation and Electrical Engineering,University of Science and Technology Beijing,Beijing 100083)

机构地区:[1]中国矿业大学信息与控制工程学院,徐州221116 [2]北京科技大学自动化学院,北京100083

出  处:《自动化学报》2024年第10期2002-2012,共11页Acta Automatica Sinica

基  金:国家自然科学基金(61973306);江苏省自然科学基金(BK20200086);流程工业综合自动化国家重点实验室开放课题基金(2020-KF-21-10)资助。

摘  要:针对一类难以建立精确模型的单输入单输出(Single-input single-output,SISO)非线性离散动态系统,提出了一种数据驱动模型的自适应控制方法.所提方法首先设计具有直链与增强结构的随机配置网络(Stochastic configuration network,SCN),建立了一种可同时表征非线性系统低阶线性部分与高阶非线性项(未建模动态)的数据驱动模型,并采用增量学习方法与监督机制,对模型结构与模型参数进行同步更新优化,保证了数据驱动模型的无限逼近能力,解决了传统自适应控制采用交替辨识算法存在的建模精度低、模型收敛性无法保证的问题.进而利用直链部分与增强部分,分别设计了线性控制器及虚拟未建模动态补偿器,建立了基于SCN数据驱动模型的自适应控制新方法,分析了其稳定性与收敛性,通过数值仿真实验和采用交替辨识算法的传统自适应控制方法进行对比,实验结果表明了所提方法的有效性.For a class of single-input single-output(SISO)nonlinear discrete dynamical systems which are difficult to establish an accurate model,a novel adaptive control method is proposed based on data-driven model.In the proposed approach,stochastic configuration network(SCN)is first employed to build the data-driven nonlinear system model,which adopts direct link and enhancement nodes to approximate the low-order linear and the high-order nonlinear parts(unmodeled dynamics)of system,respectively.Besides,this paper employed an incremental learning algorithm and supervision mechanism to optimize the model structure and model parameters synchronously,which guarantee the universal approximation property of the data-driven model,solving the problems of low modeling accuracy and unguaranteed model convergence existing in traditional adaptive control with alternate identification algorithm.Then,the direct link and enhancement nodes are used to design the linear controller and virtual unmodeled dynamics compensator respectively.A new adaptive control approach based on SCN data-driven model is established,and the stability and convergence of the proposed control method are proved.Finally,simulation comparisons between our proposed method and the classic adaptive control method with alternate identification algorithm are made,showing the effectiveness of the proposed method.

关 键 词:自适应控制 随机配置网络 监督机制 未建模动态 数据驱动模型 

分 类 号:TP13[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象