基于深度学习的渗碳齿轮金相图像分割算法  被引量:1

Carburized Gear Metallographic Image Segmentation Algorithm Based on Deep-Learning

在线阅读下载全文

作  者:董俊杰 任志俊 苏晨 王琨 DONG Junjie;REN Zhijun;SU Chen;WANG Kun(School of Mechanical Engineering,Jiangnan University,Wuxi,Jiangsu 214122,China;Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment&Technology,Jiangnan University,Wuxi,Jiangsu 214122,China)

机构地区:[1]江南大学机械工程学院,江苏无锡214122 [2]江南大学江苏省食品先进制造装备技术重点实验室,江苏无锡214122

出  处:《轻工机械》2024年第5期66-73,共8页Light Industry Machinery

基  金:江苏省科技支撑计划(工业)项目重点项目(BE2020006-5);2023年度无锡市科学技术协会软科学研究课题(KX-23-B006)。

摘  要:针对渗碳齿轮的质检依赖人工观察判断显微组织图像而造成不确定性较大的问题,课题组基于掩膜区域卷积神经网络Mask-RCNN(region-based convolutional neural network)提出了STN-Mask-RCNN模型,对渗碳齿轮中的残余奥氏体与马氏体进行图像分割,将Mask-RCNN的主干特征提取网络替换为Swin Transformer模块,引入了神经架构检索(neural architecture search,NAS)算法与特征金字塔网络(feature pyramid network,FPN)相结合的NAS-FPN模块,并在Mask图像分割分支中加入卷积块注意力模块(convolutional block attention module,CBAM),最后与DeepLabV3+模型和U-Net模型进行对比实验,并进行消融实验分析每个模块与网络性能之间的关系。实验结果表明:课题组提出的模型对渗碳齿轮中残余奥氏体与马氏体的图形分割能力较强,平均像素精度(mean pixel accuracy,mPA)达90.64%,整体性能明显优于其他模型,且各个模块对于模型性能都有不同程度的提升。Aiming at the problem of significant uncertainty in the quality inspection of carburized gears caused by manual observation of microstructure tissue images,the STN-Mask-RCNN model based on Mask-RCNN to segment residual austenite and martensite in carburized gears was proposed.The backbone feature extraction network of Mask-RCNN was replaced with Swin Transformer,and the NAS-FPN module combining FPN and neural retrieval algorithm were introduced,and the CBAM attention mechanism was added in the Mask image segmentation branch.Finally,compared the model with DeepLabV3+and U-Net models,and performed ablation experiments to analyze the relationship between each variable and network performance.The experiments show that the proposed model has strong segmentation capabilities for residual austenite and martensite in carburized gears,with an mean pixel accuracy of 90.64%.The overall performance is significantly better than other model structures,and each module contributes to the improvement of the model performance to varying degrees.

关 键 词:渗碳齿轮 金相图 区域卷积神经网络RCNN Swin Transformer神经网络模型 图像分割 深度学习 

分 类 号:TH113.2[机械工程—机械设计及理论] TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象