检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋佳 井昊坤 封周权[1,2] 陈政清[1,2] 华旭刚[1,2] 万田保[3] 吴成亮 SONG Jia;JING Haokun;FENG Zhouquan;CHEN Zhengqing;HUA Xugang;WAN Tianbao;WU Chengliang(Key Laboratory of Wind and Bridge Engineering of Hunan Province,Hunan University,Changsha 410082,China;State Key Laboratory of Bridge Engineering Safety and Resilience(Hunan University),Changsha 410082,China;China Railway Major Bridge Reconnaissance&Design Institute Co.,Ltd.,Wuhan 430056,China;Wuhan Newtery Engineering Technology Co.,Ltd.,Wuhan 430073,China)
机构地区:[1]湖南大学风工程与桥梁工程湖南省重点实验室,湖南长沙410082 [2]桥梁工程安全与韧性全国重点实验室(湖南大学),湖南长沙410082 [3]中铁大桥勘测设计院集团有限公司,湖北武汉430056 [4]武汉鑫拓力工程技术有限公司,湖北武汉430073
出 处:《地震工程与工程振动》2024年第5期188-198,共11页Earthquake Engineering and Engineering Dynamics
基 金:国家自然科学基金项目(52178284);湖南省自然科学基金项目(2021JJ30106)。
摘 要:列车的制动行为会对悬索桥的纵向运动产生影响,因此有必要对千米级大跨度铁路悬索桥在列车制动下的纵向运动进行研究。以一座主跨1060 m的大跨度铁路悬索桥为研究对象,采用数值模拟的方式探讨了列车制动作用下其梁端纵向运动的响应特性,并研究了黏滞阻尼器在控制纵向运动中的效果。首先介绍了该千米级大跨径铁路悬索桥的工程背景,以及基于ANSYS软件建立的有限元模型;然后介绍了大跨径铁路悬索桥纵向运动的加载求解方式,支座摩阻和黏滞阻尼器的有限元模拟方式,以及制动力的模拟方式;接着探究了不同制动位置、是否考虑支座摩阻力对悬索桥梁端纵向运动响应的影响;最后,研究了黏滞阻尼器的纵向运动控制效果,并进行了参数分析。研究结果表明:随着制动位置越接近下桥位置,纵向位移变化曲线形状越接近正弦函数形式;支座摩阻对列车制动作用下的梁端位移响应有一定的控制作用,对梁端速度响应控制效果不佳;采用黏滞阻尼器可以有效控制列车制动下的悬索桥梁端位移和速度响应;当采用阻尼系数为2500 kN(m/s)^(-α),阻尼指数为0.1的黏滞阻尼器时,控制效果最佳。The braking behavior of trains will notably affect the longitudinal movement of suspension bridges.Therefore,it becomes imperative to delve into the longitudinal movement of kilometer-level railway suspension bridges under the influence of train braking.This study takes a long-span railway suspension bridge with a main span of 1060 meters as its research object,and explores the response characteristics of its longitudinal movement at the girder end when subjected to train braking forces and the controlling effect of a fluid viscous dampers(FVDs)by numerical simulation.Firstly,the engineering background of the kilometer-level railway suspension bridge and the finite element model established using ANSYS software are introduced.Then,the loading and solution methods for the longitudinal movement of the long-span railway suspension bridge,the finite element simulation methods for bearing friction and FVDs,and the simulation method for braking force are described.Subsequently,the effects of different braking positions and consideration of bearing friction on the longitudinal movement response of the suspension bridge are investigated.Finally,the control effect of FVDs on longitudinal movement is studied,and parameter analysis is conducted.The results show that as the braking position approaches the point where the train exits the bridge,the shape of the longitudinal displacement curve becomes more similar to a sine function.Bearing friction has a certain control effect on the displacement response at the girder end under train braking,but its control effect on the velocity response is not ideal.The utilization of FVDs effectively controls both displacement and velocity responses at the girder end of the suspension bridge under train braking.The optimal control effect is achieved when using a FVD with a damping coefficient of 2500 kN·(m/s)^(-α)and a velocity exponent of 0.1.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.131.93.117