基于改进视觉算法的自动驾驶风险预判模型  被引量:1

Automatic Driving Risk Prediction Model Based on Improved Vision Algorithm

在线阅读下载全文

作  者:赵红专 张继康 潘佳雯 袁泉[4] 许恩永 魏金占 周旦[1] 刘承堃 ZHAO Hongzhuan;ZHANG Jikang;PAN Jiawen;YUAN Quan;XU Enyong;WEI Jinzhan;ZHOU Dan;LIU Chengkun(Guangxi Key Laboratory of Intelligent Transportation,Guilin University of Electronic Science and Technology,Guilin 541004,Guangxi,China;Commercial Vehicle Technology Center,Dongfeng Liuzhou Automobile Company Limited,Liuzhou 545000,Guangxi,China;Nanning Research Institute,Guilin University of Electronic Science and Technology,Nanning 530000,China;School of Vehicles and Transportation,Tsinghua University,Beijing 100084,China;Faculty of Electronic Information and Automation,Guilin University of Aerospace Technology,Guilin 541004,Guangxi,China)

机构地区:[1]桂林电子科技大学,广西智慧交通重点实验室,广西桂林541004 [2]东风柳州汽车有限公司,商用车技术中心,广西柳州545000 [3]桂林电子科技大学,南宁研究院,南宁530000 [4]清华大学,车辆与运载学院,北京100084 [5]桂林航天工业学院,电子信息与自动化学院,广西桂林541004

出  处:《交通运输系统工程与信息》2024年第5期79-90,139,共13页Journal of Transportation Systems Engineering and Information Technology

基  金:国家自然科学基金;广西科技重大专项。

摘  要:针对传统车辆切入过近导致自动驾驶产生脱离的问题,本文提出一种YOLOV7-Tiny(You Only Look Once Version 7 Tiny)和SS-LSTM(Strong Sort Long Short Term Memory)的自动驾驶风险预判模型。首先,模型改进了视觉目标检测模型YOLOV7-Tiny,增加小目标检测层;其次,引入SimAM(A Simple,Parameter-Free Attention Module for Convolutional Neural Networks)无参注意力机制模块,优化训练损失函数,并对其目标车辆进行轨迹跟踪及预测,通过改进的多目标跟踪算法StrongSORT(Strong Simple Online and Realtime Tracking)的短期预测不断矫正LSTM(Long Short Term Memory)的长期预测,即建立SS-LSTM模型,并将预测的超车轨迹与智能网联车自身轨迹在同一时间纬度下进行拟合,得到传统车辆切入时的风险预判模型。实验结果表明,本文的自动驾驶风险预判方法有效预判了传统车辆切入时的风险。仿真实验表明,改进YOLOV7-Tiny相比于原有算法mAP(mean Average Precision)提高了2.3个百分点,FPS(Frames Per Second)为61.35 Hz,模型大小为12.6 MB,模型满足车载端轻量化的需求。实车实验表明,根据SS-LSTM模型所得到的风险预判准确率为90.3%。In order to deal with the problem of traditional vehicles cutting too close to each other resulting in disengagement of automatic driving,this paper proposes an automatic driving risk prediction model with improved YOLOV7-Tiny and SS-LSTM.The model improves the visual target detection model YOLOV7-Tiny(You Only Look Once Version 7 Tiny),adds a small target detection layer,introduces the SimAM(A Simple,Parameter-Free Attention Module for Convolutional Neural Networks)attention mechanism module,optimizes the training loss function,and performs trajectory tracking and prediction of its target vehicle.The short-term prediction of Strong SORT(Strong Simple Online and Realtime Tracking)is utilized to continuously correct the long-term prediction of LSTM(Long Short Term Memory)to establish the SS-LSTM model.And the predicted overtaking trajectory is fitted with the trajectory of the intelligent networked vehicle itself at the same time latitude,so as to obtain the risk prediction model when the traditional vehicle cuts in.The experimental results show that the automatic driving risk prediction method in this paper effectively predicts the risk of traditional vehicles when cutting in,and the simulation experiments show that the improved YOLOV7-Tiny improves the prediction accuracy by 2.3%compared with the original algorithm mAP(mean Average Precision).The FPS(Frames Per Second)is 61.35 Hz.The model size is 12.6 MB,and the model meets the lightweight demand of the vehicle end.The real-vehicle experiments show that the accuracy of risk prediction based on the SS-LSTM model is 90.3%.

关 键 词:交通工程 风险预判 YOLOV7-Tiny 自动驾驶 长短期记忆网络 轨迹预测 

分 类 号:U491[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象