基于注意力机制的CNN-LSTM-XGBoost台风暴雨电力气象混合预测模型  

Attention Mechanism Based CNN-LSTM-XGBoost Electric Power Meteorological Hybrid Forecasting Model of Typhoon Rainstorm

在线阅读下载全文

作  者:侯慧[1] 吴文杰 魏瑞增 何浣 王磊 李正天[3] 林湘宁[3] HOU Hui;WU Wenjie;WEI Ruizeng;HE Huan;WANG Lei;LI Zhengtian;LIN Xiangning(School of Automation,Wuhan University of Technology,Wuhan 430070,China;Guangdong Key Laboratory of Electric Power Equipment Reliability,Guangzhou 510080,China;School of Electrical and Electronic Engineering,Huazhong University of Science and Technology,Wuhan 430074,China)

机构地区:[1]武汉理工大学自动化学院,湖北武汉430070 [2]广东省电力装备可靠性重点实验室,广东广州510080 [3]华中科技大学电气与电子工程学院,湖北武汉430074

出  处:《智慧电力》2024年第10期96-102,共7页Smart Power

基  金:国家自然科学基金资助项目(U22B20106);中国南方电网有限责任公司科技项目(GDKJXM20231426)。

摘  要:极端台风暴雨灾害具有非线性、极差大以及多峰值等特点。为使电网及时获取预警信息,提出一种基于注意力机制的CNN-LSTM-XGBoost台风暴雨电力气象混合预测模型。首先,利用基于注意力机制的卷积神经网络(CNN)辨识关键台风暴雨灾害特征;然后,利用长短期记忆网络(LSTM)训练时间序列预测模型以挖掘台风暴雨时序特征,使用极限梯度提升算法替换模型输出层以缓解过拟合问题;最后,以2023年台风泰利为例验证所提方法的有效性。算例分析表明,所提模型具有较高的准确性,对预测精度的提升可达40.84%以上。Major disasters such as typhoon rainstorm disasters have the characteristics of nonlinear,large range and multi-peak.To make the power grid obtain early warning information in time,the paper proposes a attention mechanism based CNN-LSTM-XGBoost electric power meteorological hybrid forecasting model of the typhoon rainstorm.Firstly,the attention mechanism based convolutional neural network is used to extract the key disaster characteristics of the typhoon rainstorm.Then the long short-term memory network(LSTM)is utilized to train time series prediction model and mine the time series feature information.To solve the problem of overfitting,the extreme gradient boosting algorithm is applied to replace model’s output layer.Finally,typhoon Talim in 2023 is taken as a case study to verify the effectiveness of the proposed method.The results show that the proposed model has better performance,and its prediction accuracy is improved by more than 40.84%.

关 键 词:台风灾害 暴雨预测 神经网络 混合模型 电网预警 

分 类 号:TM743[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象