检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘凯 宋小军 LIU Kai;SONG Xiaojun(School of Electronic and Information Engineering,Shanghai Electric Power University,Shanghai 200120,China)
机构地区:[1]上海电力大学电子与信息工程学院,上海200120
出 处:《自动化与仪表》2024年第10期108-112,共5页Automation & Instrumentation
摘 要:在多目标检测中,当目标发生移动时会导致目标形态变化或目标发生遮挡,影响目标检测精度,因此,针对在自动驾驶领域中行驶环境复杂以及传统目标检测算法依赖大量预设置先验框、泛化能力差、检测精度低等问题,提出了一种改进的CenterNet目标检测算法。选取DLA-34为主干特征提取网络,并引入可自适应确定卷积核且能跨通道交互的轻量级模块ECA-Net,实现CenterNet改进。在kitti数据集上的实验结果显示,改进后的CenterNet相比原网络的AP在car类别上提升了1.39%,在pedestrian类别上提升了11.16%,在cyclist类别上提升了19.45%,与Yolov3网络相比,改进后的CenterNet在不同类别目标检测精度上也有着明显提升。In multi-target detection,when the target moves,it can cause changes in its shape or occlusion,which affects the accuracy of target detection.Therefore,to address the complex driving environment in the field of autonomous driving and the dependence of traditional object detection algorithms on a large number of pre-set prior boxes,poor generalization ability,and low detection accuracy,an improved CenterNet object detection algorithm is proposed.DLA-34 is selected as the backbone feature extraction network,and a lightweight module ECA-Net that can adaptively determine convolution kernels and interact across channels is introduced to achieve CenterNet improvement.The experimental results on the kitti dataset showed that the improved CenterNet improved the AP of the original network by 1.39%in the car category,11.16%in the pedestrian category,and 19.45%in the cyclist category.Compared with the Yolov3 network,the improved CenterNet also showed significant improvements in object detection accuracy in different categories.
关 键 词:自动驾驶 ECA-Net DLA-34 目标检测 CenterNet
分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.80