检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:霍凤芝 刘毅勇 HUO Feng-zhi;LIU Yi-yong(Department C(Respiratory),Inner Mongolia Hospital,Peking University Cancer Hospital,Hohhot 010020,China;Department of Radiology,999th Hospital,Joint Logistic Support Force,Hohhot 010051,Inner Mongolia,China)
机构地区:[1]北京大学肿瘤医院内蒙古医院肿瘤内科C区(呼吸),内蒙古呼和浩特010020 [2]联勤保障部队第九六九医院放射科,内蒙古呼和浩特010051
出 处:《中华养生保健》2024年第20期160-165,共6页CHINESE HEALTH CARE
摘 要:目的分析肺腺癌临床及CT特征在预测表皮生长因子受体(EGFR)基因突变中的价值。方法利用便利抽样的方法,选择2017年1月—2022年12月在北京大学肿瘤医院内蒙古医院接受治疗的791例肺腺癌患者的数据实施回顾性分析。完成肺腺癌患者EGFR基因突变的预测影响因素的单因素、多因素分析,进行肺腺癌患者EGFR基因突变的预测模型构建和预测效能分析。结果纳入调查的791例患者之中,有420例患者的EGFR基因突变为阳性(53.10%)。单因素分析结果显示,EGFR基因突变阳性和阴性患者的吸烟、磨玻璃密度影、充气支气管征、血管集束征、胸膜牵拉征、双肺多发转移的数据差异有统计学意义(P<0.05)。Logistic多因素分析结果显示,吸烟、磨玻璃密度影、充气支气管征、血管集束征、胸膜牵拉征、双肺多发转移是肺腺癌患者EGFR基因突变的独立影响因素(P<0.05)。依据多因素分析所筛选出来的变量构建列线图风险模型,C-index为0.786。利用Logistic回归模型P值预测概率,采用受试者操作特征(ROC)曲线对肺腺癌患者EGFR基因突变的列线图模型预测效能实施分析,约登指数为61.98%。结论不吸烟、存在磨玻璃密度影、充气支气管征、胸膜牵拉征、血管集束征及双肺多发转移可作为肺腺癌患者出现EGFR基因突变的独立预测因子。通过以上因子构建的数学模型可以起到良好的预测效果。Objective To analyze the clinical and CT features of lung adenocarcinoma in predicting EGFR gene mutation.Methods The data of 791 patients with lung adenocarcinoma who were treated in Inner Mongolia Hospital of Peking University Cancer Hospital from January 2017 to December 2022 were retrospectively analyzed by convenience sampling.Univariate and multivariate analysis of predictive factors of EGFR gene mutation in patients with lung adenocarcinoma wasfinished.Construction of predictive model of EGFR gene mutation in lung adenocarcinoma patients and analysis of predictive efficacy was done.Results Of the 791 patients included in the study,420(53.10%)were positive for EGFR mutations.The results of single factor analysis showed that there were statistically significant differences in smoking,ground glass density shadow,air bronchial sign,vascular cluster sign,pleural pull sign and multiple metastasis in both lungs between EGFR mutation positive and negative patients(P<0.05).logistic multivariate analysis showed that smoking,ground glass density shadow,air bronchial sign,vascular bunching sign,pleural pull sign and double lung multiple metastasis were independent influencing factors of EGFR gene mutation in lung adenocarcinoma patients(P<0.05).The nomogram risk model was constructed based on the variables screened by multi-factor analysis,and the C-index was 0.786.The P value of logistic regression model was used to predict the probability,and ROC curve was used to analyze the prediction efficiency of EGFR gene mutation in lung adenocarcinoma patients.The Jorden index was 61.98%.Conclusion Non-smoking,presence of ground glass density shadow,air bronchial sign,pleural pull sign,vascular bunching sign and multiple metastasis in both lungs can be independent predictors of EGFR mutation in lung adenocarcinoma patients.The mathematical model constructed by the above factors can play a good forecasting effect.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170