超越视觉限制:失象症的跨学科探索  

Beyond visual constraints:Interdisciplinary exploration of aphantasia

在线阅读下载全文

作  者:齐登辉 张得龙 QI Denghui;ZHANG Delong(School of Psychology,South China Normal University,Guangzhou 510631,China)

机构地区:[1]华南师范大学心理学院,广州510631

出  处:《心理科学进展》2024年第11期1844-1853,共10页Advances in Psychological Science

基  金:国家自然科学基金资助项目(31600907)。

摘  要:失象症是一种特殊的心理现象,表现为个体无法自主在大脑中生成心理表象。研究者通过VVIQ等主观报告方法揭示了失象症现象的存在,并借助双眼竞争范式和脑成像技术探讨了失象症的神经基础。研究发现失象症个体通常采用替代策略,如语言描述等非视觉策略,以弥补表象能力的缺陷。这些策略不仅体现在想象和记忆领域,还在空间能力、元认知和情感体验等方面表现出多样性。深度学习模型的发展不仅推动了认知科学与人工智能的交叉,还为揭示失象症的神经计算机制提供了新途径。未来研究应继续探索失象症的多感官模态与认知多样性,建立新的深度学习模型,模拟失象症的认知模式并探究其神经机制,为揭示大脑信息表征并开发更好的拟人化智能产品提供科学依据。Aphantasia is a unique psychological phenomenon characterized by an individual's inability to voluntarily generate mental imagery in the brain.Researchers have revealed the existence of aphantasia through subjective assessment methods such as the VVIQ,and explored its neural basis using binocular rivalry paradigms and brain imaging techniques.The study found that individuals with aphantasia often employ alternative strategies,such as verbal descriptions and non-visual approaches,to compensate for deficits in imagery tasks.These strategies are diverse and manifest not only in imagination and memory but also in spatial abilities,metacognition,and emotional experiences.The application of deep learning models has not only advanced the intersection of cognitive science and artificial intelligence but also provided new avenues for uncovering the neural computational mechanisms of aphantasia.Future research could continue to explore the multisensory modalities and cognitive diversity in aphantasia,develop new deep learning models to simulate its cognitive patterns,and reveal its neural mechanisms,offering new pathways for understanding brain information representation and developing more human-like intelligent systems.

关 键 词:失象症 心理表象 认知策略 深度学习 

分 类 号:B842[哲学宗教—基础心理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象