检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄驰涵 HUANG Chihan(School of Design Art&Media,Nanjing University of Science and Technology,Nanjing 210094,China)
机构地区:[1]南京理工大学设计艺术与传媒学院,江苏南京210094
出 处:《计算机与网络》2024年第5期456-460,共5页Computer & Network
摘 要:随着计算机视觉中Transformer模型的引入,增加模型的数据量是实现更好性能和鲁棒性的绝佳方法。然而,当模型的参数达到亿级时,传统微调方法变得越来越有局限性,甚至有时不适用。因此,通过学习额外输入来调整模型的视觉提示模型成为处理冻结云模型的方法,既不需要前馈处理,也不需要后处理。提出了提示生成网络(Prompt Generative Network,PGN),通过端到端学习生成高性能的输入相关的提示。PGN能在预训练时适应各种训练集,在获取的数据集中优于以往方法,且模型参数减少了100倍。With the introduction of Transformer models in computer vision,increasing the amount of data in the model is an excellent way to achieve better performance and robustness.However,when the parameters of the model reach the level of 100 million,the traditional fine-tuning method becomes more and more limited,and sometimes even inapplicable.Therefore,a visual prompt model that adjusts the model by learning additional inputs becomes a way to deal with frozen cloud models that require neither feed-forward nor post-processing.This paper proposes a Prompt Generative Network(PGN)to generate high-performance input-related prompts through end-to-end learning.PGN can adapt to various training sets during pre-training,and its data set is better than previous methods,and the model parameters are reduced by 100 times.
关 键 词:提示生成网络 TRANSFORMER 计算机视觉 适应输入
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.106.93