角度修正和分级多种群的动态多目标进化算法  

Dynamic Multi-Objective Evolutionary Algorithm Based on Angle Correction and Hierarchical Multi-Population

在线阅读下载全文

作  者:杨乐 马永杰[1] 平镐羽 杨岳 YANG Le;MA Yong-jie;PING Hao-yu;YANG Yue(School of Physics and Electronic Engineering,Northwest Normal University,Lanzhou,Gansu 730070,China)

机构地区:[1]西北师范大学物理与电子工程学院,甘肃兰州730070

出  处:《电子学报》2024年第9期3278-3290,共13页Acta Electronica Sinica

基  金:国家自然科学基金(No.62066041)。

摘  要:为更好地应对动态多目标优化中的环境变化,提出了一种对差分向量进行角度修正以及分级多种群协同进化(Angle Correction and Hierarchical Multi-Population,ACHMP)的进化算法.根据历史信息,使用无迹卡尔曼滤波模型来预测种群的中心点,通过不同时刻的中心点产生不同的差分向量,再使用无迹卡尔曼滤波对差分向量进行角度修正;提出的多种群协同进化模式将种群分为三部分并使其沿不同的方向进化,子种群监督主种群进化,在提升了算法性能的同时,也保证了种群的多样性.与10种对比算法在不同测试问题上的实验结果显示,ACHMP算法的性能总体优于其他算法,证明了本文提出的角度修正和分级多种群方法在处理动态多目标优化问题时具有较强的竞争力.In order to better cope with the environmental changes in dynamic multi-objective optimization,an evolu⁃tionary algorithm with angular correction of difference vectors and hierarchical multi-population co-evolution(ACHMP)is proposed.According to the historical information,use the unscented Kalman filter model to predict the population cen⁃troids,generate different difference vectors through different centroids at different times,and then use the unscented Kal⁃man filter to correct the angle of the difference vectors.A multi-population coevolution model is proposed,which divides the population into three parts to evolve in different directions.The sub-population supervises the evolution of the master population,which not only improves the performance of the algorithm,but also ensures the diversity of the population.Ex⁃perimental results with 10 comparison algorithms on different test problems show that the ACHMP algorithm performs bet⁃ter than the other algorithms in general,which proves that the angle correction and hierarchical multi-population method proposed in this paper has strong competitiveness in dealing with dynamic multi-objective optimization problems.

关 键 词:动态多目标优化 差分向量角度修正 分级多种群 无迹卡尔曼滤波 预测策略 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象