检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:樊家晖 窦银科[1,2] 寇立伟 张宇 FAN Jia-hui;DOU Yin-ke;KOU Li-wei;ZHANG Yu(College of Electrical and Power Engineering,Taiyuan University of Technology,Taiyuan Shanxi,030024,China;Shanxi Energy Internet Research Institute,Taiyuan Shanxi,030032,China;Department of Automation,Taiyuan Institute of Technology,Taiyuan Shanxi,030008,China)
机构地区:[1]太原理工大学电气与动力工程学院,山西太原030024 [2]山西省能源互联网研究院,山西太原030032 [3]太原工业学院自动化系,山西太原030008
出 处:《计算机仿真》2024年第10期254-259,共6页Computer Simulation
基 金:国家重点研发计划子课题(SQ2022YFC2800200-3);山西省基础研究计划青年项目(202103021223048);山西省研究生教育创新项目(2022Y223)。
摘 要:极地复杂环境导致无人车在极地作业活动受限,因此需要联合无人机与无人车组成空地协同系统,高效完成作业。无人机-车协同定位是空地协同的基础,传统定位算法采用单一的视觉信息实现,定位精度受环境影响较大。而利用单一的惯性传感器定位易产生积分偏移,无法实现长时定位。基于此,基于扩展卡尔曼滤波(Extended Kalman Filter,EKF)器,提出一种无人机-车协同定位算法,利用Apriltag标识码结合PNP算法实现无人机对无人车的识别和视觉定位,融合无人车自身惯性传感器,实现无人机-车协同定位。实验结果表明,相较于单一的视觉定位算法和惯性导航定位算法,上述融合算法定位精度更高。The complex polar environment limits the operational activities of unmanned vehicles in polar regions,therefore it is necessary to form an air ground coordination system by combining unmanned aerial vehicles and unmanned vehicles to efficiently complete operations.UAV vehicle collaborative positioning is the foundation of air ground collaboration.Traditional positioning algorithms use a single visual information to achieve positioning accuracy,which is greatly affected by the environment.On the other hand,the use of a single inertial sensor suffers from integral offset and cannot achieve long-time positioning.Based on this,this paper proposes an UAV-AGV cooperative positioning algorithm based on the Extended Kalman Filter(EKF).It uses the Apriltag identification code combined with the PNP algorithm to achieve the recognition and visual positioning for AGVs,and incorporates the UAV's own inertial sensors to achieve UAV-AGV cooperative positioning.The experimental results show that the proposed cooperative positioning algorithm has higher positioning accuracy compared with the single visual positioning algorithm and the inertial navigation positioning algorithm.
关 键 词:协同定位 无人机 视觉定位 扩展卡尔曼滤波 数据融合
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构] TP391.9[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145