检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王坦 朱洪波 Wang Tan;Zhu Hongbo(College of Electrical and Information Engineering,Anhui University of Science and Technology,Huainan 232001,China)
机构地区:[1]安徽理工大学电气与信息工程学院,安徽淮南232001
出 处:《煤矿机械》2024年第11期197-200,共4页Coal Mine Machinery
基 金:国家自然科学基金项目(62003001);安徽高校自然科学研究项目重大项目(2023AH040157)。
摘 要:针对矿井恶劣环境中无线传感网络的部分传感器节点出现测量异常时的煤矿机器人定位问题,构建了一种基于信任机制的分布式无迹卡尔曼滤波(DUKF)融合算法,旨在提高测量异常下对煤矿机器人定位的精确性。首先,各传感器节点根据采集的局部多源测量信息实时更新,获得煤矿机器人状态的局部后验估计。其次,基于K-means降维两簇聚类的信任机制将获得的估计信息分为信任估计信息和非信任估计信息,忽略非信任估计信息而保留信任估计信息。最后,通过融合信任估计信息进行下一时刻的预测更新。仿真结果表明,该算法在面对传感器测量异常时可以实现对煤矿机器人的精准定位。Aiming at the coal mine robot positioning problem when some sensor nodes of the wirelesssensor networks in the harsh environment of the mine have measurement anomalies,a distributed unscented Kalman filter(DUKF)fusion algorithm based on the trust mechanism was constructed,so as to improve the positioning accuracyof the coal mine robot under measurement anomalies.First,each sensor node updates in real time based on the collected local multi-source measurement information to obtain local posterior estimations of the coal mine robot states.Secondly,the trust mechanism based on K-means dimensionality reduction two-cluster clustering divides the obtained estimations information into trust estimation information and non-trust estimation information,ignores the non-trust estimations information and retains the trust estimations information.Finally,the prediction is updated at the next moment by fusing the trust estimations information.The simulation results show that this algorithm can achieve precise positioning of the coal mine robot when facing sensor measurement anomalies.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3