检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王浩聪 王栎阳 付主木 陈启宏[3] 陶发展 WANG Hao-cong;WANG Yue-yang;FU Zhu-mu;CHEN Qi-hong;TAO Fa-zhan(College of Information Engineering,Henan University of Science and Technology,Luoyang Henan 471023,China;Henan Key Laboratory of Robot and Intelligent Systems,Luoyang Henan 471023,China;School of Automation,Wuhan University of Technology,Wuhan Hubei 430070,China)
机构地区:[1]河南科技大学信息工程学院,河南洛阳471023 [2]河南省机器人与智能系统重点实验室,河南洛阳471023 [3]武汉理工大学自动化学院,湖北武汉430070
出 处:《控制理论与应用》2024年第10期1831-1841,共11页Control Theory & Applications
基 金:国家自然科学基金项目(62201200);河南省高校科技创新人才计划项目(23HASTIT021);河南省重点研发与推广专项科技攻关项目(212102210153,222102240009);河南省博士后科研项目(202003077);河南省科技研发计划联合基金项目(222103810036);内蒙古机电控制重点实验室开放基金项目(IMMEC2022001,IMMEC2022002)资助.
摘 要:针对配备有锂电池与超级电容的燃料电池混合动力汽车,为降低车辆总体运行成本,延长能量源寿命,本文提出一种基于深度强化学习的能量管理策略.首先,依据超级电容高功率密度特性,建立基于模糊自适应滤波的功率分层结构,并依据燃料电池与锂电池的经验退化模型,建立能量源退化的成本函数,采用等效消耗最小策略平衡氢耗成本与能量源退化成本,以最小化总体运行成本为目标来优化能量源功率分配;然后,引入优先经验回放与软更新以提高深度强化学习的离线训练效率;最后,在多种工况下进行仿真,结果表明,与未考虑退化的策略相比,本文所提出策略在全球统一轻型车辆测试循环下可使氢耗量降低11.8%,并可有效减缓燃料电池与锂电池的退化速率,降低燃料电池混合动力汽车的总体运行成本.For the fuel cell hybrid electric vehicle equipped with lithium battery and ultracapacitor,to reduce the overall operation cost and prolong the lifespan of energy sources,an energy management strategy based on deep reinforcement learning is proposed in this paper.Firstly,according to the high power density characteristics of ultracapacitor,a power hierarchical structure based on a fuzzy adaptivefilter is established,and based on the empirical degradation model of fuel cell and lithium battery,the cost function of energy source degradation is established.The equivalent consumption minimum strategy is used to balance the hydrogen consumption cost and energy source degradation cost,and the power allocation of energy sources is optimized to minimize the overall operation cost.Then,prioritized experience replay and soft update are introduced to improve the off-line training efficiency of deep reinforcement learning.Finally,the simulation is carried out under various driving cycles.The results show that compared with the strategy without considering degradation,the proposed strategy reduces hydrogen consumption by 11.8%under the world light vehicle test cycle,and can effectively slow down the degradation rate of fuel cell and lithium battery and reduce the overall operating cost of fuel cell hybrid electric vehicle.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7