检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李秉涛 何勇[1] LI Bingtao;HE Yong(College of Computer Science and Technology,Guizhou University,Guiyang 550025)
机构地区:[1]贵州大学计算机科学与技术学院,贵阳550025
出 处:《计算机与数字工程》2024年第9期2721-2725,2770,共6页Computer & Digital Engineering
摘 要:针对YOLOv4-tiny存在计算量较大,检测精度低,无法满足嵌入式设备实时性需求的问题,论文基于MobileNetv3改进的轻量级网络YOLOv4-E,使用BN层的γ尺度因子对冗余的特征通道进行剪枝,在25%剪枝率下模型大小降低到了6.7MB,mAP仅降低了0.59%,FPS提升了8.8%。同时使用NCNN前向推理框架对剪枝后的模型进行Int8量化,在树莓派4B上检测单张图片仅需173 ms,满足了实时性需求。Aiming at the problem that YOLOv4-tiny has a large amount of calculation and low detection accuracy,which cannot meet the real-time requirements of embedded devices,based on the improved lightweight network YOLOv4-E of MobileNetv3,this paper uses the scale factor of BN layer to prune the redundant characteristic channels.At 25% pruning rate,the size of the model is reduced to 6.7 MB,mAP is reduced by only 0.59%,and FPS is increased by 8.8%.At the same time,the NCNN forward reasoning framework is used to quantify the Int8 of the pruning model.It is only 173 ms to detect a single image on RaspberryPi 4B,which meets the real-time requirements.
关 键 词:目标检测 YOLOv4-tiny 剪枝 嵌入式设备
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222