检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:饶怡 袁博川 袁玉波[1,2] RAO Yi;YUAN Bochuan;YUAN Yubo(School of Information Science and Engineering,East China University of Science and Technology,Shanghai 200237,China;Shanghai Engineering Research Center of Big Data&Internet Audience,Shanghai 200072,China)
机构地区:[1]华东理工大学信息与科学工程学院,上海200237 [2]上海大数据与互联网受众工程技术研究中心,上海200072
出 处:《计算机科学》2024年第S02期986-994,共9页Computer Science
基 金:上海市工程技术中心项目(18DZ2252300)。
摘 要:随着人工智能在教育领域的广泛应用,在线课堂已成为当今极为便捷高效的新教育模式。然而,如何有效管理学习者的课堂学习状态成为一项重要的教育管理难题。鉴于此,提出一种在线课堂学习者互动状态识别方法。首先,将在线课堂数据源分为视频数据和音频数据,基于视频数据构建了包括学习者上肢姿态特征、表情特征以及面部特征等多维度的互动状态特征,基于音频数据构建了学习者的课堂应答状态特征。其次,通过特征选择算法筛选出的关键特征,构建二分类模型,采用贝叶斯优化实现对学生课堂互动状态的精确识别。最后,设计了一个在线课堂总体情况评估模型,为教师提供全面的课堂评估结果,优化教学策略。在自建的在线课堂视频数据集上,该单名学习者课中互动状态识别算法的准确率能够达到93%以上。With the widespread application of artificial intelligence in the field of education,online classrooms have become a highly convenient and efficient mode of modern education.However,effectively managing the learning status of students in the classroom has become an important challenge in education management.In light of this,method for recognizing learner interaction states in online classrooms is proposed.First,the online classroom data source is divided into video data and audio data.Based on video data,a multidimensional set of interaction state features is constructed,including learner upper body posture features,facial expression features,and facial features.Based on audio data,classroom response state features of the learners are built.Next,using a feature selection algorithm to select key features,a binary classification model is constructed to achieve precise recognition of students′classroom interaction states using Bayesian optimization.Finally,an overall classroom assessment model is designed to provide comprehensive classroom assessment results for teachers and optimize teaching strategies.The accuracy of the learner interaction state recognition algorithm in this single-student classroom exceeds 93%,as validated on a self-constructed online classroom video data set.
关 键 词:人工智能 教育管理 面部特征 姿态特征 表情识别 课堂评估
分 类 号:TP399[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.118.173.146