检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:叶东东 徐霞[1,2,3] 丁玉庭 YE Dongdong;XU Xia;DING Yuting(College of Food Science and Technology,Zhejiang University of Technology,Hangzhou 310014,China;Zhejiang Key Laboratory of Green,Low-carbon and Efficient Development of Marine Fishery Resources,Hangzhou 310014 China;National R&D Branch Center for Pelagic Aquatic Products Processing(Hangzhou),Hangzhou 310014,China)
机构地区:[1]浙江工业大学食品科学与工程学院,浙江杭州310014 [2]全省深蓝渔业资源绿色低碳高效开发重点实验室,浙江杭州310014 [3]国家远洋水产品加工技术研发分中心(杭州),浙江杭州310014
出 处:《食品与发酵工业》2024年第22期389-398,共10页Food and Fermentation Industries
基 金:浙江省“尖兵”“领雁”研发攻关计划项目(2022C02025);浙江省基础公益研究计划项目(LTGN23C200017)。
摘 要:在全球渔业产量不断增加和对鱼类品质保障需求提升的背景下,传统的鱼类加工和品质监测方法大多依赖人工操作,这不仅效率低下而且结果的一致性和准确性难以保证,逐渐无法满足现代需求。机器视觉和深度学习技术的结合,提供了一种高效、自动化的方法来提升鱼类加工与品质监测的准确性和效率。该综述概述了机器视觉系统和深度学习在鱼类加工中的应用,包括分类分拣、切割定位、重量估算等方面,并详细介绍了利用高光谱成像、近红外成像、比色传感器和传统成像等方法在品质监测中的最新研究进展,突出了深度学习在提升这些技术识别、分类精度和处理复杂图像数据能力方面的潜力。尽管机器学习技术在单一的加工问题中取得了成功,但面对复杂数据和环境变化时的适应性仍有限,这促使深度学习的相关研究日益受到重视。该文发现当前针对鱼类加工领域的深度学习研究还相对较少,且缺乏能够综合解决鱼类加工和品质监测多重任务的系统性研究。As global fishery outputs grow and demands for fish quality assurance rise,traditional fish processing and quality monitoring methods are increasingly unable to meet modern requirements.The integration of machine vision and deep learning technologies presents an efficient and automated solution to enhance the accuracy and efficiency of fish processing and quality monitoring.This review outlines the applications of machine vision systems and deep learning in fish processing,including tasks such as sorting,cutting,and mass estimation.It delves into the latest research on quality monitoring using hyperspectral imaging,near-infrared imaging,colorimetric sensors,and traditional imaging,emphasizing the potential of deep learning to improve recognition,classification accuracy,and the processing of complex image data.Despite the success of machine learning in addressing specific processing issues,its adaptability to complex data and changing environmental conditions remains limited,underscoring the increasing importance of deep learning research.However,research in the fish processing domain that utilizes deep learning is still relatively sparse,with a notable absence of comprehensive systems capable of addressing multiple processing and monitoring challenges.This study found an urgent need for future research focused on developing integrated systems that could tackle a variety of tasks in fish processing and quality monitoring.Such systems promise not only to improve efficiency and reduce costs but also to ensure product quality through real-time surveillance.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7