检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王佳鑫 李雪飞 张颖 WANG Jiaxin;LI Xuefei;ZHANG Ying(Information Center,Beijing Institute of Fashion Technology,Beijing,China;School of Fashion Accessory,Beijing Institute of Fashion Technology,Beijing,China)
机构地区:[1]北京服装学院信息中心,北京 [2]北京服装学院服装艺术与工程学院,北京
出 处:《东华大学学报(自然科学版)》2024年第6期151-157,共7页Journal of Donghua University(Natural Science)
基 金:2020北京市教委项目(KM202010012007);北京服装学院研究生科研创新项目(X2024-124)。
摘 要:为了提高服饰图像的智能分类效率和分类准确性,提出一种基于EfficientNet模型改进的服饰分类模型。该模型基于卷积神经网络构建,将EfficientNet-B0模型和EfficientNet-B1模型与SE模块相结合,对卷积神经网络的结构和激活函数进行改进,以提升其特征提取和表达能力。结果显示,改进后的模型不会引入大量参数,且改进后整体上模型在服饰数据集UT-zappos50K和Fashion-MNIST数据集上的分类准确率相较于VGG16、Swin Transformer等经典卷积神经网络模型最多提高了2.65%。这表明该改进方式能够有效提高服饰图像分类模型的性能。To enhance the intelligent classification efficiency and accuracy of clothing images,a clothing classification model is proposed,based on the EfficientNet model.Constructed using convolutional neural networks,this model integrates and combines the EfficientNet-B0 and EfficientNet-B1 models with SE modules.It also improves the structure and activation functions of the convolutional neural network to enhance its feature extraction and representation capabilities.The results demonstrate that the improved model,without introducing a significant number of parameters,achieves a maximum increase of 2.65%in classification accuracy on clothing datasets such as UT-zappos50K and Fashion-MNIST,as compared to classic convolutional neural network models like VGG16 and Swin Transformer.This validates that this improvement approach is effective in enhancing the performance of clothing image classification models.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.4