基于改进YOLOv8n的机器人视觉系统目标识别算法研究  

Research on Object Recognition Algorithm for Robot Vision System Based on Improved YOLOv8n

在线阅读下载全文

作  者:宫明明[1] GONG Mingming(Qingdao Vocational and Technical College,Qingdao 266000,China)

机构地区:[1]青岛职业技术学院,山东青岛266000

出  处:《数字通信世界》2024年第11期47-49,共3页Digital Communication World

摘  要:针对机器人视觉系统在开阔环境中检测精度低的问题,该文提出了基于改进YOLOv8n的目标检测算法。实验结果显示,在引入多尺度检测头和压缩-激励注意力模块后,YOLOv8n的准确率上升到82.3%,而在引入Ghost卷积后,算法的浮点运算数降低至11.6。同时基于改进YOLOv8n的目标检测算法在水面环境中的检测准确率可达83.6%,高于其他算法。上述结果表明,基于改进YOLOv8n的目标检测算法不仅检测精度高,且计算复杂度低。In response to the problem of low detection accuracy of robot vision systems in open environments,a target detection algorithm based on improved YOLOv8n is proposed.The experimental results show that with the introduction of a multi-scale detection head and a compression excitation attention module,the accuracy of YOLOv8n increases to 82.3%,while with the introduction of Ghost convolution,the floating-point operations of the algorithm decrease to 11.6.At the same time,the detection accuracy of the object detection algorithm based on improved YOLOv8n in water surface environment can reach 83.6%,which is higher than other algorithms.The above results indicate that the object detection algorithm based on improved YOLOv8n not only has high detection accuracy,but also has low computational complexity.

关 键 词:机器人 目标检测 YOLOv8n 注意力机制 Ghost卷积 

分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象