检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王蕾[1] 殷秀强 龙翔 邱新 童欢珞 WANG Lei;YIN Xiuqiang;LONG Xiang;QIU Xin;TONG Huanluo(School of Information Engineering,East China University of Technology,Nanchang 330013,China;Department of Imaging,Fuzhou First People’s Hospital,Fuzhou 344000,China)
机构地区:[1]东华理工大学信息工程学院,江西南昌330013 [2]抚州市第一人民医院影像科,江西抚州344000
出 处:《中国介入影像与治疗学》2024年第11期696-701,共6页Chinese Journal of Interventional Imaging and Therapy
摘 要:目的观察基于空间可分离卷积构建的SS-3DUNet模型自动分割增强T1WI所示肛瘘瘘管的价值。方法回顾性分析29例肛瘘患者的2405幅盆腔轴位增强MR T1WI,随机选取其中19例共1537幅图像为训练集,以5例424幅图像为验证集,5例444幅图像为测试集。基于空间可分离卷积构建SS-3DUNet模型用于自动分割增强MR T1WI中的肛管瘘管,并引入层间特征强化模块加强定位瘘管特征;于训练集、验证集训练并选择最佳模型。以人工标注结果为标准,基于测试集观察SS-3DUNet模型自动分割肛瘘瘘管的效能。结果SS-3DUNet自动分割测试集单幅图像中的瘘管用时为0.59~0.61 s,分割瘘管边界区域与人工标注区域的吻合度较高;其分割测试集瘘管的平均分割戴斯相似系数、敏感度及精确率分别为0.746、70.04%及82.93%。结论基于空间可分离卷积SS-3DUNet能有效自动分割增强T1WI所示肛瘘瘘管。Objective To observe the value of SS-3DUNet model based on spatially separable convolutions for automatically segmenting anal fistula in enhanced MR T1WI.Methods Totally 2405 pelvic axial enhanced MR T1WI of 29 patients with anal fistula were retrospectively analyzed,and 1537 images from 19 cases were randomly selected as training set,424 images from 5 cases were as validation set,444 images from 5 cases were as test set.A SS-3DUNet model was constructed based on spatially separable convolutions to automatically segment anal fistula in enhanced MR T1WI,and inter-layer feature enhancement module was incorporated to improve the location of fistula features.The model was trained in training set and the best one was selected based on validation set.Taking the results of manual labeling by clinicians,the efficacy of SS-3DUNet model for automatically segmenting anal fistulas was observed based on test set.Results The time of SS-3DUNet automatically segmenting anal fistula in a single image in test set was 0.59—0.61 s,and the coincidence of the boundary of fistula segmented by the model and manual label was high.The average Dice similarity coefficient,sensitivity and accuracy of SS-3DUNet for automatically segmenting anal fistula in test set was 0.746,70.04%and 82.93%,respectively.Conclusion SS-3DUNet model based on spatially separable convolutions could effectively automatically segmenting anal fistula in enhanced T1WI.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.177.173