检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李慧 郑山红[1] 王国春[1] 郭佳 LI Hui;ZHENG Shan-hong;WANG Guo-chun;GUO Jia(School of Computer Science and Engineering,Changchun University of Technology,Changchun 130012,China)
机构地区:[1]长春工业大学计算机科学与工程学院,吉林长春130012
出 处:《计算机工程与设计》2024年第11期3463-3470,共8页Computer Engineering and Design
基 金:吉林省科技发展计划基金项目(20220201159GX)。
摘 要:为解决基于图神经网络社交推荐方法只考虑用户的社交关系,忽略了项目之间的相互依赖关系,以及没有考虑用户和项目的偏好偏移的问题,提出一种基于分布式和图注意力机制的社交推荐算法。利用图神经网络获得用户和项目之间的关联,得到用户和项目之间的依赖关系;把用户和项目的偏差看作向量,融合到学习用户和项目表示的过程中,利用分散邻域集捕获统计偏差偏移;结合多头注意力机制关注全局信息的权重分配,提升特征提取能力。在对Ciao和Epinions这两个真实数据集进行测试的过程中,所得结果显示,GNN-DMR模型在均方根误差和平均绝对误差这两个评价指标上,相较其它算法均展现出更低的数值,验证了该推荐系统模型的高效性和实用性。To solve the problem that the graph neural network-based social recommendation method only consider the user’s social relationship and ignores the interdependence between items,and does not consider the preference shift of users and items,a social recommendation algorithm based on distribution and graph attention mechanism was proposed.The graph neural network was used to obtain the correlation between users and projects,the dependencies between users and projects were obtained.The bias of users and items was treated as vectors,they were integrated into the process of learning the representation of users and items,and the scattered neighborhood set was used to capture the statistical bias shift.The multi-head attention mechanism was combined to pay attention to the weight allocation of global information to improve the feature extraction ability.In the process of testing the two real datasets of Ciao and Epinions,the results show that the GNN-DMR model shows lower values than other algorithms in the two evaluation indexes of root mean square error and mean absolute error,which verifies the efficiency and practicability of the recommended system model.
关 键 词:推荐系统 社交关系 图神经网络 神经网络 注意力机制 评分预测 偏好偏移
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15