检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:敬超 吴媛媛 谢天圻 孙伟恒 JING Chao;WU Yuanyuan;XIE Tianqi;SUN Weiheng(College of Computer Science and Cyber Security,Chengdu University of Technology,Chengdu 610059,China)
机构地区:[1]成都理工大学计算机与网络安全学院(示范性软件学院),成都610059
出 处:《计算机工程与应用》2024年第23期49-61,共13页Computer Engineering and Applications
基 金:成都理工大学2023年中青年骨干教师发展资助计划(10912-JXGG2023-06470)。
摘 要:群体情绪识别在公众场合、平安城市等场景有着重要的应用。随着人工智能的发展,人们逐渐意识到使用深度学习的方法对群体情绪研究的重要贡献。对近年来国内外相关研究工作进行系统性归纳,详细阐述了群体情绪识别领域的研究现状。着重探讨了群体情绪的特征提取方法和情绪识别研究方法,并对使用相同数据集的相关研究进行了较为全面的比较和评价。在此基础上,梳理了该研究领域的难点和问题,总结了特征提取和研究方法常用的优化方向和手段,这有助于研究者更好地了解不同情绪识别任务的特点,并为未来的研究提供了可行的研究方法和发展方向。The recognition of group emotions has important applications in public settings,safe cities,and other scenarios.With the development of artificial intelligence,there is a growing awareness of the significant contribution of using deep learning methods to the study of group emotions.This paper systematically summarizes recent domestic and international research efforts,elaborating on the current status of research in the field of group emotion recognition.It focuses on discussing methods for feature extraction and emotion recognition research in group emotions,and provides a comprehen-sive comparison and evaluation of related studies using the same dataset.Based on this,it outlines the challenges and issues in this research field,summarizes commonly used optimization directions and methods for feature extraction as well as research methods.The paper helps researchers better understand the characteristics of different emotion recogni-tion tasks and provides feasible research methods and development directions for future studies.
关 键 词:计算机视觉 深度学习 群体情绪识别 特征提取 情绪模型
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.219.93.1