检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:余杨 何刘 YU Yang;HE Liu(Sichuan Provincial Key Laboratory of Vehicle Measurement,Control and Safety,Xihua University,Chengdu 610039,China)
机构地区:[1]西华大学汽车测控与安全四川省重点实验室,四川成都610039
出 处:《汽车实用技术》2024年第23期49-54,共6页Automobile Applied Technology
摘 要:为提升交通信号灯的检测精度和识别准确率,文章提出基于YOLOv8的SVDD-YOLOv8目标检测方法,该方法通过整合全局注意力机制(GAM)和支持向量数据描述(SVDD)分类模块,强化特征捕捉并二次确认目标,同时引入EIoU损失函数提高定位精度。对SVDD别出的异常区域进行再训练,提升模型性能。实验显示,该方法较YOLOv8在检测精度和mAP@0.5上分别提升7.75%和8.99%,证明了该方法在提高交通信号灯检测精度和抗干扰能力上的有效性。To improve the detection accuracy and recognition precision of traffic lights,this paper proposes an SVDD-YOLOv8 target detection method based on YOLOv8.This method enhances feature capture and reconfirms targets by integrating the global attention mechanism(GAM)and support vector data description(SVDD)classification module.Meanwhile,the embedding intersection over union(EIoU)loss function is introduced to improve positioning accuracy.The abnormal areas identified by SVDD are retrained to enhance the model's performance.Experiments show that this method improves detection accuracy and mAP@0.5 by 7.75%and 8.99%,respectively,compared to YOLOv8,demonstrating the effectiveness of this approach in improving traffic light detection accuracy and anti-interference ability.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.24.18