检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:覃文军 乔林 张长帅 曲睿婷 李东 王飞 杨壮观 TAN Wenjun;QIAO Lin;ZHANG Changshuai;QU Ruiting;LI Dong;WANG Fei;YANG Zhuangguan(School of Computer Science and Engineering,Northeastern University,Shenyang 110006,China;State Grid Liaoning Electric Power Co.,Ltd.Information and Communication Branch,Shenyang 110006,China;Anhui Jiyuan Software Co.,Ltd.,Hefei 230097,China)
机构地区:[1]东北大学计算机科学与工程学院,沈阳110006 [2]国网辽宁省电力有限公司信息通信分公司,沈阳110006 [3]安徽继远软件有限公司,合肥230097
出 处:《小型微型计算机系统》2024年第12期2891-2897,共7页Journal of Chinese Computer Systems
基 金:国网辽宁省电力有限公司科技项目(2022YF-90)资助。
摘 要:常见的命名实体识别模型主要关注字词特征的抽取,对上下文语义信息的捕捉与挖掘不够充分,对中文字词边界模糊、语义歧义等问题效果较差;对此,提出了一种结合词典方法的图注意力网络实体抽取模型,能够有效减少错误信息在网络中的传播,增强对词典信息的有效利用;并通过融入“BMES”图结构和注意力机制,建立字词之间的通道,深度挖掘字词在不同语境下的关系;为了验证模型的有效性,在MRSA和Weibo数据集上进行了测试,模型在MRSA上的F1值可达94.12%,与传统方法相比提高了1.42%;后者在模型下的F1值可达61.30%,较传统方法提升了2.51%;实验结果证明,结合词典方法和交互图的图注意力网络模型在MRSA和Weibo数据集上实体识别的准确率优于传统方法,且具有一定的泛化能力.Common named entity recognition models mainly focus on word feature extraction,insufficient capture and mining of contextual semantic information,and have poor results on problems such as fuzzy boundaries and semantic ambiguity of Chinese characters and words.In this regard,an entity extraction model of graph attention network combined with dictionary method is proposed,which can effectively reduce the propagation of error information in the network and enhance the effective use of dictionary information.By incorporating the“BMES”graph structure and attention mechanism,the channel between words is established,and the relationship between words in different contexts is deeply mined.In order to verify the validity of the model,tested on MRSA and Weibo data sets,the F1 value of the model on MRSA can reach 94.12%,which is increased by 1.42%compared with the traditional method.The F1 value of the latter under the model can reach 61.30%,which is 2.51%higher than that of the traditional method.Experimental results show that the GAN model combined with dictionary method and interactive graph is superior to traditional methods in entity recognition on MRSA and Weibo data sets,and has certain generalization ability.
关 键 词:命名实体识别 特征抽取 词典 图注意力网络 交互图
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.133.112.22