检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘潇 官恺 金飞[1] 芮杰[1] 王淑香[1] 林雨准 程传祥 LIU Xiao;GUAN Kai;JIN Fei;RUI Jie;WANG Shuxiang;LIN Yuzhun;CHENG Chuanxiang(Institute of Geospatial Information,Information Engineering University,Zhengzhou 450001,China;The Technical Division of Surveying&Mapping of Xi'an,Xi'an 710054,China)
机构地区:[1]信息工程大学,河南郑州450001 [2]西安测绘总站,陕西西安710054
出 处:《测绘通报》2024年第11期133-139,共7页Bulletin of Surveying and Mapping
摘 要:随着深度学习的发展,监督型密集匹配网络取得了瞩目的成就。然而,密集匹配的真实标签制作困难,获取成本高,基于无监督深度学习的密集匹配方法是未来趋势。目前,面向无监督密集匹配提出了众多损失函数,但各种组合损失复杂且存在效果不明的问题。为此,本文针对密集匹配无监督损失函数开展研究,分析各类损失的精度和匹配效果,并考证组合应用的有效性。结果表明,重构相似性约束是令无监督密集匹配网络匹配精度收敛的关键项,组合使用重构损失和左右一致损失有助于无纹理、弱纹理区域匹配,在此基础上加入相对平滑损失能更好适应阴暗环境。With the advancement of deep learning,supervised dense matching networks have achieved remarkable progress.However,obtaining real annotations for dense matching is challenging and costly,making unsupervised deep learning-based methods the future trend.Recently,numerous loss functions have been proposed for unsupervised dense matching.However,their combinations are complex and effects remain unknown.Therefore,this study investigates unsupervised loss functions for dense matching,analyzes the accuracy and matching performance of various losses,and validates the effectiveness of combined applications.The results demonstrate that the appearance matching loss plays a pivotal role in achieving convergence in accuracy for unsupervised dense matching networks.Combining appearance matching loss with left-right disparity consistency loss facilitates accurate non and weak textured region matches.Then,adding relative smoothing loss can better adapt to dark environments.
分 类 号:P237[天文地球—摄影测量与遥感]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249