检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李磊[1] 赵彦喆 米玉泽 朱宏殷 LI Lei;ZHAO Yanzhe;MI Yuze;ZHU Hongyin(School of Electrical&Electronic Engineering,Changchun University of Technology,Changchun 130012,China)
机构地区:[1]长春工业大学电气与电子工程学院,吉林长春130012
出 处:《长春工业大学学报》2024年第6期481-488,F0003,共9页Journal of Changchun University of Technology
基 金:吉林省科技厅自然科学基金项目(20240101363JC);吉林省教育厅科学技术项目(JJKH20230758KJ)。
摘 要:针对呼气丙酮检测提出了基于GoogLeNet深度学习框架结合电子鼻(E-nose)传感器阵列的非侵入式呼气检测方法。该方法不仅克服了传统电子鼻呼气检测在数据处理过程中需要手动提取特征的不足,还创新性将气体传感器时间序列响应数据通过可视化方法转换为响应图像,从而实现了混合气体中目标气体的准确识别;同时对现有的GoogLeNet架构进行了修改,改进后的模型(D-GoogLeNet)减少了过拟合现象的出现,即使在样本量较小的情况下也能实现有效分类;此外,为了验证模型的鲁棒性,在实验室模拟的患者不同浓度的呼气标志物中人为地引入高斯噪声,检验了模型的抗干扰能力。实验结果表明,在未添加噪声的情况下,丙酮和乙醇及其混合物的分类准确率、召回率和精确度均为1,当噪声标准差为100时,该模型对单一气体的分类准确率、精确度和召回率不受影响,仍然为1,但对混合物的分类准确度降为0.84,精确度和召回率降为0.94。实验结果证明了该检测方法的可行性,有望为临床检测奠定基础。For the detection of breath acetone in patients,this paper proposes a non-invasive breath detection method based on GoogLeNet deep learning framework combined with electronic nose(E-nose)sensors array.The proposed method not only overcome the traditional electronic nose breath testing shortcoming,manually extract the features in the process of data processing,but also innovatively converted the gas sensor response time series data into a response figure through image visualization methods,to realize the accurate identification of target gas in the gas mixture;at the same time,the existing GoogLeNet architecture was modified,the improved model(D-GoogLeNet)reduced the occurrence of overfitting phenomenon,and could achieve effective classification even with small sample sizes.In addition,in order to verify the robustness of the model,different concentrations of patients’breath markers are simulated,and the Gaussian noise is introduced,testing the anti-interference ability of the model.The experimental results show that the classification accuracy,recall and precision of acetone,ethanol and their mixtures are all 1 without adding noise.When the standard deviation of noise is 100,the classification accuracy,precision and recall of the model for single gas is still 1,but the classification accuracy of the mixture is reduced to 0.84 and the precision and recall were reduced to 0.94.The experimental results proved the feasibility of the proposed method,which was expected to be a basis for clinical detection.
关 键 词:电子鼻 呼气检测 GoogLeNet 深度学习 噪声处理
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.80.46