检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈浩[1] 张美燕 蔡文郁[1] CHEN Hao;ZHANG Meiyan;CAI Wenyu(College of Electronics and Information,Hangzhou Dianzi University,Hangzhou Zhejiang 310018,China;College of Electrical Engineering,Zhejiang University of Water Resources and Electric Power,Hangzhou Zhejiang 310018,China)
机构地区:[1]杭州电子科技大学电子信息学院,浙江杭州310018 [2]浙江水利水电学院电气工程学院,浙江杭州310018
出 处:《传感技术学报》2024年第11期1911-1920,共10页Chinese Journal of Sensors and Actuators
基 金:浙江省自然科学基金项目(LZ22F010004);国家自然科学基金项目(62271179)。
摘 要:为了提高围捕系统的围捕效率,提出一种基于融合蛇优化算法的多AUV协同围捕算法(Multi-AUV Cooperative Hunting Algorithm based on Fusion Snake Optimization algorithm,MACHA_FSO)。MACHA_FSO改进随机目标搜索策略,采用莱维飞行策略设置搜索目标,就近原则变更围捕AUV工作区域,保证围捕AUV的搜索效率。MACHA_FSO构建围捕系统的整体能耗模型,采用最小化围捕距离策略建立围捕联盟,提出融合蛇优化算法合理规划围捕AUV的围捕路径,有效降低围捕AUV能耗。仿真结果表明:相较于CPGBNN,RIGBNN和PRACO围捕算法,MACHA_FSO能够合理设置围捕AUV的搜索目标与围捕路径,且围捕系统平均能量消耗降低41%,围捕逃逸目标平均用时降低32%,围捕逃逸目标平均数量提高1倍,围捕系统平均生存时间提高15%。In order to improve the efficiency of the hunting system,a multi-AUV cooperative hunting algorithm based on fusion snake optimization algorithm(MACHA_FSO)is proposed.The random targets search strategy is improved by using MACHA_FSO to ensure the search efficiency of hunter AUVs.The Lévy flight strategy is used to set the search target of hunter AUVs.The principle of proximity is used to update the working area of hunter AUVs.The overall energy consumption model of the hunting system is established by using MACHA_FSO.The hunting distance minimization strategy is used to establish the hunter alliance.In order to reduce the energy consumption of the hunter AUVs,the fusion snake optimization algorithm is proposed to plan the hunting path of hunter AUVs.Compared with CPGBNN,RIGBNN,and PRACO,the proposed MACHA_FSO can set the search target and the hunting path of hunter AUVs reasonably.Extensive experimental results show that the average energy consumption of the hunting system is reduced by 41%,the average time for hunting escaping targets is reduced by 32%,the average number of hunting escaping targets is increased by 100%,and the average survival time of the hunting system is increased by 15%.
关 键 词:多AUV协同围捕 路径规划 能源消耗 蛇优化算法
分 类 号:TP242.6[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.164.105