检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:沙云东 赵俊豪[1,2] 栾孝驰 马煜 SHA Yundong;ZHAO Junhao;LUAN Xiaochi;MA Yu(College of Aero Engine,Shenyang Aerospace University,Shenyang 110136,China;Liaoning Province Key Laboratory of Advanced Test Technology for Aeronautical Propul‐sion System,Shenyang Aerospace University,Shenyang 110136,China)
机构地区:[1]沈阳航空航天大学航空发动机学院,沈阳110136 [2]沈阳航空航天大学辽宁省航空推进系统先进测试技术重点实验室,沈阳110136
出 处:《沈阳航空航天大学学报》2024年第5期15-25,共11页Journal of Shenyang Aerospace University
基 金:中国航发产学研合作项目(项目编号:HFZL2018CXY017)。
摘 要:针对航空发动机主轴承故障信号传输路径复杂、不稳定和故障特征提取困难的特点,提出了一种基于时域特征参数、频域特征参数和本征模态函数(intrinsic mode function,IMF)能量矩特征参数融合降维的故障识别方法。首先,分别选取60组轴承滚动体故障、内圈故障、外圈故障和正常轴承数据,提取时域特征、频域特征及能量矩特征。由于3种参数组成的融合向量维度过大、数据量庞大和信息冗余,利用主成分分析方法(principal component analysis,PCA)对3种数据进行融合降维,根据主成分累积贡献率提取有效的主成分分量。最后,将降维后的特征向量输入支持向量机(support vector machine,SVM)中进行模式识别,诊断不同类型的轴承故障。结果表明,相对于使用单一特征参数等模型的故障识别正确率,该方法能够在复杂的信号中提取出有效的故障特征向量,之后运用故障特征向量准确地对故障类型进行识别分类,故障识别率达到98.75%。In response to the complexities of fault signal transmission path,instability and difficulties in extracting fault feature for aircraft engine main bearing,a fault recognition method was proposed based on the fusion of time-domain feature parameters,frequency-domain feature parameters and intrinsic mode function(IMF)energy moment feature parameters for dimensionality reduction.Firstly,60 groups of bearing rolling element fault,inner ring fault,outer ring fault and bearing without fault data were selected respectively then time-domain,frequency-domain and energy moment features were extracted from these instances.Addressing the issue of high dimensionality,extensive data and redundant information of the fusion vector composed of three parameters,principal component analysis(PCA)was employed to reduce the dimensionality of these data and effective principal components were ex‐tracted based on cumulative contribution rates of principal components.Finally,the dimensionality re‐duction feature vectors were input into the support vector machine(SVM)for pattern recognition to di‐agnose the types of bearing faults.The results demonstrate that compared to models employing single feature parameters,this method effectively extracts fault feature vectors from complex signals.Subse‐quently,it accurately identifies and classifies fault types using these feature vectors,achieving a fault recognition rate of 98.75%.
关 键 词:主轴承 多特征参数 主成分分析方法 支持向量机 故障诊断 航空发动机
分 类 号:V231.92[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7