深度网络生成式伪造人脸检测方法研究综述  

Review of Deep Network Generative Fake Face Detection Methods

在线阅读下载全文

作  者:杨睿 胡心如 黄卓超 张玉书 蓝如师 邓珍荣 罗笑南 Yang Rui;Hu Xinru;Huang Zhuochao;Zhang Yushu;Lan Rushi;Deng Zhenrong;Luo Xiaonan(Guangxi Key Laboratory of Images and Graphic Intelligent Processing,Guilin University of Electronic Technology,Guilin 541004;School of Computer Science and Information Security,Guilin University of Electronic Technology,Guilin 541004;Nanning Research Institute,Guilin University of Electronic Technology,Nanning 530033;College of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 210016)

机构地区:[1]桂林电子科技大学广西图像图形与智能处理重点实验室,桂林541004 [2]桂林电子科技大学计算机与信息安全学院,桂林541004 [3]桂林电子科技大学南宁研究院,南宁530033 [4]南京航空航天大学计算机科学与技术学院,南京210016

出  处:《计算机辅助设计与图形学学报》2024年第10期1491-1510,共20页Journal of Computer-Aided Design & Computer Graphics

基  金:广西自然科学基金(2019GXNSFFA245014,AD20159034);广西科技计划(AB20238013,AB22035052);国家自然科学基金(62172120,62002082,6202780103);广西图像图形与智能处理重点实验室项目(GIIP2209,GIIP2211,GIIP2003);桂林电子科技大学研究生教育创新计划(2023YCXB09).

摘  要:随着深度网络生成式伪造人脸技术的迅速传播,不法分子通过伪造人脸图像和视频实施电信诈骗等犯罪活动,如何从海量数据中高效、准确地检测出伪造人脸成为研究焦点.文中从深度网络生成式伪造人脸图像和生成式伪造人脸视频2个角度出发,系统归纳、分析、比较了当前伪造人脸检测方法.针对伪造人脸图像,从基于数字图像处理基础、深层次特征提取、空间域特征分析、多特征融合分析和指纹检测5个类别详细介绍了检测方法;并从生理信号、身份信息、多模态和时空不一致4个类别对伪造人脸视频的检测方法进行了探讨.分析表明,目前深度网络生成式伪造人脸检测方法的泛化能力有待提高,在未来的研究中,应当着重提升模型的跨数据集泛化能力、准确性和实用性,从而更好地防范虚假信息传播,以保护个人隐私和维护网络安全环境.With the rapid spread of deep network generated fake face technology,criminals perpetrate telecom fraud,manipulate public opinion,and disseminate obscenity by forging face images and videos.How to effi-ciently and accurately detect fake faces from massive data has become a research focus.In this review,we sys-tematically summarize,analyze and compare the current deep network generative forgery face detection meth-ods from two fields:generative forgery face image and generative forgery face video.For the forged face im-ages,the detection methods are introduced in detail from five categories:digital image processing foundation,deep feature extraction,spatial domain feature analysis,multi-feature fusion analysis and fingerprint detection.The detection methods of fake face videos are also discussed from four categories:physiological signals,iden-tity information,multi-modal and spatio-temporal inconsistency.The analysis shows that the generalization ability of the current deep network generative fake face detection method needs to be improved.In future re-search,we should focus on improving the cross-dataset generalization ability,accuracy and practicality of the model,so as to better prevent the spread of false information,protect personal privacy and maintain network security environment.

关 键 词:伪造人脸检测 生成式伪造人脸 人脸图像 人脸视频 深度网络 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象