基于预训练CNN模型深度特征融合的苹果叶片病害检测  

Detection of Enhanced Apple Leaf Disease Using Fused Deep Features from Pre-trained CNNs

在线阅读下载全文

作  者:张正风[1] 高峰[1] ZHANG Zheng-feng;GAO Feng(Xuzhou Vocational College of Bioengineering,Xuzhou,Jiangsu 221006)

机构地区:[1]徐州生物工程职业技术学院,江苏徐州221006

出  处:《安徽农业科学》2024年第23期216-219,共4页Journal of Anhui Agricultural Sciences

基  金:中国高校产学研创新基金项目“基于VR的互联网-红色旅游应用研究-以淮海战役烈士纪念塔园林景区为例”(2022IT061)。

摘  要:探讨了采用预训练的卷积神经网络(CNN)模型,如GoogLeNet、VGGNet和EfficientNet,作为特征提取器对苹果叶片病害检测准确率的影响。通过结合这3个CNN模型导出的深度特征,实现了深度学习特征的组合,使用提取的深度特征训练了支持向量机(SVM)分类器。结果表明,所有CNN模型都能以显著的准确率使用深度特征提取并检测出苹果叶片病害,整体分类准确率达到了99.42%。此外,该研究还提出了一种基于改进深度学习的方法,通过结合3个CNN模型的深度特征,进一步提高了预测性能。该方法在苹果叶片病害检测中表现出色,并有望应用于其他植物叶片的病害检测。该研究为植物病害的自动识别提供了一种有效的方法,有助于农业生产的智能化和精准化。A comprehensive examination of the application of pre-trained Convolutional Neural Networks(CNNs)was discussed,such as GoogLeNet,VGGNet and EfficientNet in detecting apple leaf diseases and pests.By addressing the limitations and gaps in existing research,we focused on enhancing detection accuracy by leveraging deep features extracted from these CNN models.The methodology involved the fusion of deep features obtained from the final fully connected layers of the CNNs,followed by the training of a Support Vector Machine(SVM)classifier.Results showed that all the CNN models demonstrated significant accuracy in detecting apple leaf diseases using deep feature extraction,achieving an overall classification accuracy of 99.42%.Furthermore,an improved deep learning approach was introduced which combined the deep features from the three CNN models,further boosting predictive performance.The methodology exhibited promising results in apple leaf disease detection and had potential applications in detecting diseases in other plant leaves.This research contributed to the development of automated and precise plant disease identification techniques,paving the way for intelligent and targeted agricultural production.

关 键 词:苹果叶片病害 卷积神经网络 深度特征提取 支持向量机 病害检测 

分 类 号:S-058[农业科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象