检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陆芸婷 康绍鹏 吴双 何川 LU Yunting;KANG Shaopeng;WU Shuang;HE Chuan(School of Mechanical Engineering,Jiangsu University of Technology,Changzhou,Jiangsu 213001,China;Jiangsu Changjiang Intelligent Manufacturing Research Institute Co.,Ltd.,Changzhou,Jiangsu 213001,China)
机构地区:[1]江苏理工学院机械工程学院,江苏常州213001 [2]江苏长江智能制造研究院有限责任公司,江苏常州213001
出 处:《计算机工程与应用》2024年第24期331-339,共9页Computer Engineering and Applications
基 金:国家自然科学基金(51805228);江苏省高等学校自然科学研究项目(22KJB460021);常州市领军型创新人才引进培育项目(CQ20210093,CQ20220089)。
摘 要:针对无纺布缺陷检测算法实时性差,检测准确率低的问题,设计了一种基于改进YOLOv5的无纺布缺陷检测算法N-YOLO。该算法结合产线实际情况和产品特性运用视觉检测技术,在YOLOv5算法的基础上引入FasterNet网络作为主干特征提取网络进行轻量化改进,利用部分卷积进行特征提取减少模型计算量。同时在C3模块中增加SK注意力机制提高模型检测精度,并采用WIoUv1损失函数计算边界框回归损失,提高边界框定位精度。实验结果表明N-YOLO算法与YOLOv5s相比浮点计算量减少85.4%,参数量由7 020 913减少到3 368 105,减少了52%,模型大小为6.63 MB,平均检测精度能达到99.2%,召回率达到99.2%,与Faster R-CNN和SSD等目标检测算法相比具有明显优势,无需昂贵的硬件设备即可在高速生产情况下对无纺布缺陷进行实时检测。Aiming at the problems of poor real-time performance and low detection accuracy of non-woven defect detec-tion algorithm,a non-woven defect detection algorithm N-YOLO based on improved YOLOv5 is designed.Based on the actual situation of the production line and product characteristics,the algorithm uses visual detection technology.Firstly,based on the YOLOv5 algorithm,FasterNet network is introduced as the backbone feature extraction network for light-weight improvement,and partial convolution is used for feature extraction to reduce the model computation.At the same time,SK attention mechanism is added in C3 module to improve the model detection accuracy,and WIoUv1 loss function is used to calculate the boundary frame regression loss to improve the boundary frame positioning accuracy.Experimental results show that compared with YOLOv5,N-YOLO algorithm reduces floating point computation by 85.4%,parameter number by 52%from 7020913 to 3368105,model size is 6.63 MB,average detection accuracy can reach 99.2%,recall rate can reach 99.2%.Compared with target detection algorithms such as Faster R-CNN and SSD,it has obvious advantages,and can detect defects of non-wovens in real time under high-speed production without expensive hardware equipment.
关 键 词:YOLOv5 缺陷检测 轻量化 注意力机制 损失函数
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.120