检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘亚鹏 LIU Yapeng(Henan Economy&Trade Technician Institute,Xinxiang,Henan 453000,China)
出 处:《移动信息》2024年第11期32-34,共3页Mobile Information
摘 要:由于现行方法在通信网络异常流量攻击识别中应用效果不理想,文中提出了一种基于人工神经网络的通信网络异常流量攻击识别方法。利用采集器从通信网络日志中提取网络流量特征,对网络特征数据进行补偿并过滤重复数据,通过对特征数据的二值化处理,将数据值统一映射到数据区间[0,1],利用滑动窗口函数将特征数据切片处理为多模态数据,并通过人工神经网络对网络异常流量进行分类,以识别网络异常流量攻击,实现基于人工神经网络的通信网络异常流量攻击识别。实验证明,文中提出的方法识别率在95%以上,漏识率在1%以内,能实现对通信网络异常流量攻击的精准识别。Due to the unsatisfactory application effect of current methods in identifying abnormal traffic attacks in communication networks,this paper proposes an artificial neural network-based method for identifying abnormal traffic attacks in communication networks.Using a collector to extract network traffic features from communication network logs,compensating and filtering duplicate data for network feature data,and mapping data values to data intervals[0,1]through binary processing of feature data.Using a sliding window function to slice feature data into multimodal data,and using an artificial neural network to classify network abnormal traffic and identify network abnormal traffic attacks,achieving identification of communication network abnormal traffic attacks based on artificial neural networks.Experimental results have shown that the proposed method has a recognition rate of over 95%and a miss rate of less than 1%,and can accurately identify abnormal traffic attacks in communication networks.
关 键 词:人工神经网络 通信网络 异常流量 攻击识别 二值化 滑动窗口函数
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33