检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张淼萱 张洪刚[1] ZHANG Miao-Xuan;ZHANG Hong-Gang(School of Artificial Intelligence,Beijing University of Posts and Telecommunications,Beijing 100876)
出 处:《计算机学报》2024年第12期2819-2851,共33页Chinese Journal of Computers
基 金:国家自然科学基金面上项目(No.62076034)资助.
摘 要:近年来,人脸表情识别(Facial Expression Recognition,FER)被广泛应用于医疗、社交机器人、通信、安全等诸多领域.与此同时,为加深研究者对模型本质的认识,确保模型的公平性、隐私保护性与鲁棒性,越来越多的研究者关注表情识别可解释性的研究.本文依据结果可解释、机理可解释、模型可解释的分类原则,对表情识别中的可解释性研究方法进行了分类与总结.具体而言,结果可解释表情识别主要包括基于文本描述和人脸基本结构的方法.机理可解释方法主要研究了表情识别中的注意力机制,以及基于特征解耦和概念学习方法的可解释方法.模型可解释方法主要探究了可解释性分类方法.最后,对表情识别可解释性研究进行了对比与分析,并对未来的发展方向进行了讨论与展望,包括复杂表情的可解释性、多模态情绪识别的可解释性、大模型表情与情绪识别的可解释性以及基于可解释性提升泛化能力四个方面.本文旨在为感兴趣的研究人员提供人脸表情识别可解释性问题研究现状的整理与分析,推动该领域的进一步发展.In recent years,Facial Expression Recognition(FER)has been widely used in medicine,social robotics,communication,security and many other fields.A growing number of researchers are showing interest in the FER area and have proposed useful algorithms.At the same time,the study of FER interpretability has attracted increasing attention from researchers,as it can deepen their understanding of the models and ensure fairness,privacy preservation,and robustness.In this paper,we summarized the interpretability works in the field of FER based on the classification of result interpretability,mechanism interpretability,and model interpretability.Result interpretability indicates the extent to which people with specific experience can consistently understand the results of the models.Specifically,result interpretable FER mainly includes methods based on text description and the basic structure of the face.Wherein the methods based on face structure consists of approaches based on facial action units(AU),topological modeling,caricature images and interference analysis.In addition,mechanism interpretability focuses on explanation of the internal mechanism of the models,including the attention mechanism in FER,as well as the interpretability methods based on feature decoupling and concept learning.As for model interpretability,researchers often try to find out the decision principle or rules of the models.This paper illustrates the interpretable classification methods in FER,which belong to model interpretability.Such approaches involve those based on Multi-Kernel Support Vector Machine(MKSVM)and those based on decision trees and deep forest.Additionally,we compared and analyzed the FER interpretability works.We also identified current problems in this area,including the lack of evaluation metrics for FER interpretability analysis,the challenge of balancing the accuracy and interpretability of FER models,and the limited interpretability data available for expression recognition.Afterwards,a discussion and outlook on the way for
关 键 词:人脸表情识别 可解释性 计算机视觉 情感计算 机器学习
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.149.241.32