检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭旭 丁建完[1] 陈炳楠 GUO Xu;DING Jian-wan;CHEN Bing-nan(College of Mechanical Science and Engineering,Huazhong University of Science and Technology,Wuhan Hubei 430074,China)
机构地区:[1]华中科技大学机械科学与工程学院,湖北武汉430074
出 处:《计算机仿真》2024年第11期386-392,共7页Computer Simulation
基 金:国家重点研发计划(2019YFB1706501)。
摘 要:线性定常电路通常由一系列刚性很强的微分方程组描述,此类微分方程的求解一直是传统基于时间离散的积分方法所面临的难题。基于状态变量离散思想的量化状态系统(Quantized State Systems,QSS)算法能有效解决这一类微分方程。现有的QSS算法只能通过设置量子大小来求解,而大多数仿真应用场景是需要事先设置算法的误差,这说明得到量子与误差之间的量化关系显得尤为重要。为此,通过分析线性定常电路状态方程的统一形式,提出一种面向线性定常电路的QSS误差计算方法。将其用Modelica模型表示,并将模型应用于2个典型线性定常电路系统进行仿真求解。通过对比QSS算法解与解析解证明了上述方法的准确性、简便性。Linear time-invariant circuit was usually described by a series of rigid differential equations.The solution of these differential equations was always a difficult problem for traditional integration methods based on time dis-cretization.Quantized State Systems(QSS)algorithm based on discrete thought of state variables can solve this kind of differential equation effectively.The existing QSS algorithm can only be solved by setting the quantum size,while the algorithm error needs to be set in advance in most simulation application scenarios.So,it is particularly important to obtain the quantitative relationship between quantum and error.Therefore,a method of QSS error calculation for a power electronic system is proposed by analyzing the unified form of the power electronic system's state equation.It is represented by the Modelica model and applied to two typical linear time-invariant circuits for simulation solutions.By comparing the solution of the QSS algorithm with the analytical solution,the accuracy and simplicity of this method are proved.
关 键 词:线性定常电路 微分方程 量化状态系统 状态方程 误差计算
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222