检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:翟肇裕 张梓涵 徐焕良[1] 王海清[1] 陈曦[1] 杨陈敏 ZHAI Zhaoyu;ZHANG Zihan;XU Huanliang;WANG Haiqing;CHEN Xi;YANG Chenmin(College of Artificial Intelligence,Nanjing Agricultural University,Nanjing 210095,China)
出 处:《农业机械学报》2024年第11期1-20,共20页Transactions of the Chinese Society for Agricultural Machinery
基 金:国家自然科学基金项目(32401697);江苏省自然科学基金项目(BK20231004);江苏省科技计划专项资金项目(BE2023369)。
摘 要:动植物表型是动植物特征与性状的定量描述,表型特征的精准计算与分析是推进数字农业发展的重要基础。得益于深度学习技术的迅猛发展,以YOLO系列算法为代表的计算机视觉模型在动植物表型分析任务中展现出了优良性能和巨大潜力。以家畜类、家禽类、作物类、果蔬类等动植物为对象,分别从目标检测、关键点检测、目标分割3方面概述了YOLO系列算法应用研究进展。最后指出YOLO系列算法未来发展趋势,包括轻量化架构设计、小目标精准检测、弱监督学习、复杂场景部署、大模型目标检测等。Plant and animal phenotypes are quantitative descriptions of their characteristics and traits.Accurate analysis of phenotypic features is an important prerequisite for the development of digital agriculture.The traditional phenotypic analysis task heavily relies on manual identification and measurement by agricultural experts,which is labor-intensive,costly,and sensitive to subjective judgments.Also,the traditional approach can hardly process high-throughput data.Benefited by the rapid development of the deep learning technique,as one of the most representative computer vision models,the YOLO family algorithms have shown excellent performance and great potential in plant and animal phenotypic analysis tasks,including disease diagnosis,behavior quantification,biomass estimation,and so on.In this review,livestock,poultry,crops,fruits,vegetables,and other plants and animals were chosen as the research targets.The research progress of YOLO family algorithm applications was summarized from three aspects,namely,object detection,key point detection,and object segmentation.Along the same lines,some commonly used datasets for plant and animal phenotyping tasks for subsequent researchers were presented.Finally,the potential problems faced by current researching and the future development trend of YOLO family algorithms were highlighted,including lightweight architecture design,accurate detection of small targets,weakly supervised learning,complex scene deployment,and large model for target detection.The research aimed at providing summarization and guidance for plant and animal phenotypic analysis based on YOLO family algorithms and promoting the further development of digital agriculture.
关 键 词:YOLO 动植物表型 目标检测 关键点检测 目标分割 轻量化
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249