基于改进YOLOv5和Deep SORT的桥梁车辆识别及跟踪研究  

Study of Vehicle Detection and Tracking on Bridge by Improved YOLOv5 and Deep SORT

在线阅读下载全文

作  者:赵智勇 Zhao Zhiyong(CCCC First Highway Consultants Co.,Ltd.,Xi’an 710075,China)

机构地区:[1]中交第一公路勘察设计研究院有限公司,陕西西安710075

出  处:《市政技术》2024年第12期174-181,共8页Journal of Municipal Technology

摘  要:掌握真实的车辆荷载情况对桥梁设计及智能管养具有重要意义。为此,基于计算机视觉技术和深度学习,建立了一种用于桥梁上多车检测和跟踪的算法。首先,收集交通监控视频建立了多种类型车辆的外观特征数据库。其次,建立了多车检测算法,并在所搭建的数据库上对其进行训练和测试。随后,将性能最佳的检测算法与跟踪算法相结合,进而完成桥梁上多车目标的连续跟踪。最后,依托某跨海大桥的交通监控视频对所提方法进行了验证,并评估了算法的可靠性和准确性。实验结果表明:提出的多车检测和跟踪算法的检测准确率较高,跟踪效果较好,在视频序列中稳定性较好,可成功完成桥梁上多车的连续跟踪任务。研究成果可为后续桥梁设计及智能化管养提供数据参考。It is of great significance to know the real vehicle load condition for bridge design and intelligent maintenance.Therefore,based on computer vision technology and deep learning,the multi-vehicle detection and tracking algorithm on the bridge is established in this paper.Firstly,a vehicle appearance dataset containing multiple types is established by collecting traffic surveillance videos.Secondly,the multi-vehicles detection algorithms is established and trained and tested on the dataset.Then,the algorithm with the best performance is combined with the best tracking algorithm to complete the multi-vehicle target tracking on the bridge.Finally,based on the traffic monitoring data of a long-span bridge,the improved effect of the algorithm is verified,and the reliability and accuracy of the proposed algorithm are verified.The experimental results show that the proposed multi-vehicle detection and tracking algorithm has high detection accuracy,better tracking effect and stability in video sequences,which can successfully complete the continuous tracking of multi-vehicles on bridges.The research results can provide data reference for the subsequent intelligent management and maintenance of bridges.

关 键 词:桥梁工程 计算机视觉 车辆荷载 目标检测 目标跟踪 

分 类 号:U447[建筑科学—桥梁与隧道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象