检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨现民[1] 张惠影 李新[1] Yang Xianmin;Zhang Huiying;Li Xin(Jiangsu Provincial Engineering Technology Research Center for Educational Informatization,Jiangsu Normal University,Xuzhou 221116,Jiangsu)
机构地区:[1]江苏师范大学江苏省教育信息化工程技术研究中心,江苏徐州221116
出 处:《中国电化教育》2024年第12期39-47,共9页China Educational Technology
基 金:国家自然科学基金面上项目“网络学习资源群体进化的规律识别与预警技术研究”(项目编号:62077030)研究成果。
摘 要:在大规模开放协同环境下,数字化学习资源的生产和传播是一个复杂的网络演变过程。在生成和分享过程中,资源逐步建立关联,实现规模扩大和网络结构的完善,最终形成数字化学习资源关联网络。当前,数字化学习资源关联网络相关研究日益增多,从构建技术来看,通常包括数据准备、模态融合、可视化表达、网络分析四个步骤,涉及数据挖掘、复杂网络分析、多模态信息处理三项关键技术。从拓扑结构上看,通常符合幂律分布特性,表现出无标度、小世界的特点,新加入的节点往往倾向于与有影响力的节点连接。从演化模型上看,已有模型大多利用经典无标度网络模型及其改进模型来研究演化机理,揭示演化规律。然而,受资源群体复杂性和动态性的影响,当前数字化学习资源关联网络研究在多模态学习资源语义识别与融合、资源间隐性关联关系提取以及资源关联网络演化规律识别等方面面临诸多挑战。未来,多模异构数字化学习资源关联网络构建、资源关联网络演化规律及特征识别、资源关联网络质量评估方法与技术研究、资源关联网络促进教学的内在机理阐释将成为数字化学习资源关联网络研究的主要趋势。The production and dissemination of digital learning resources in a large-scale open collaborative environment is a complex network evolution process.During the generation and sharing process,resources gradually establish connections with other resources,achieving scale expansion and network structure improvement,forming a digital learning resource association network.Currently,research on digital learning resource association networks is emerging continuously.From a construction technology perspective,it generally includes four processes:data preparation,modal fusion,network visualization,and network analysis,involving three key technologies:data mining,complex network analysis,and multimodal information processing.From a topological structure perspective,it usually conforms to the power-law distribution characteristics,showing scale-free and small-world features,with newly added nodes tending to connect with influential nodes.From the perspective of evolution models,existing models mostly use classic scale-free network models and their improved models to study the evolution mechanism and reveal the evolution laws.However,influenced by the complexity and dynamics of resource groups,current research on digital learning resource association networks faces challenges in aspects such as semantic recognition and fusion of multimodal learning resources,extraction of implicit association relationships between resources,and identification of resource association network evolution laws.In the future,the construction of multimodal heterogeneous digital learning resource association networks,identification and feature recognition of resource association network evolution laws,research on resource association network quality assessment methods and technologies,and elucidation of the intrinsic mechanism of resource association networks promoting teaching will become the main trends in the research of digital learning resource association networks.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7