检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:崔治忠 CUI Zhizhong(School of Marxism,Qinghai Normal University,Xining 810008,China)
机构地区:[1]青海师范大学马克思主义学院,青海西宁810008
出 处:《太原师范学院学报(社会科学版)》2024年第4期21-27,共7页Journal of Taiyuan Normal University:Social Science Edition
基 金:国家社会科学基金一般项目“能力知识研究”(23BZX072)。
摘 要:盖梯尔反例的存在揭示了传统知识定义的不足:成真条件、信念条件和辩护条件加起来并不是知识的充分条件。盖梯尔反例的实质不是信念辩护理由当中存在虚假内容,也不是认识活动当中存在偶然运气,而是认识主体对信念内容提供的辩护存在缺陷,不能绝对保证信念内容为真。为了彻底排除有辩护的信念碰巧为真的可能性,知识论学家从内在主义维度和外在主义维度提出多种完善传统知识定义的方案。但是,这些方案要么无法完全排除盖梯尔反例,要么存在概念模糊和不便操作的问题。解决盖梯尔反例的合理方案应该承认知识具有语境相关性和可错性,肯定认识活动当中存在运气成分,同时要把基于自我立场的辩护和第三者立场的辩护有机结合起来,为真信念提供尽可能强的辩护。The Gettiered counterexamples reveal the deficiency of traditional definition of knowledge that truth condition,belief condition and justification condition are not sufficient conditions for knowledge.The essence of Gettier counterexample is not false belief presented in justification and luck existing in cognitive activity,but that the justification supplied by protagonist is defective and doesn’t absolutely warrant truth of the belief.In the end,Gettier problem is justification problem.In order to completely eliminate the possibility that the justified belief occasionally is true,epistemologists propose different additional conditions to traditional definition of knowledge from internalism and externalism.But those proposals not only couldn’t rule out all Gettiered counterexamples,but also have problems of vagueness and being hard to operate.The new solution of Gettier counterexample is that protagonist should acknowledge that knowledge has relativity of context and fallibility and accept that there is lucky element in human knowledge,and combine the justification from the first personal position and the justification from the third personal position to support the true belief as far as possible.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.15.52