检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:罗茜 许勇强 LUO Xi;XU Yongqiang(School of Mathematics and Statistics,Minnan Normal University,Zhangzhou Fujian 363000,China)
机构地区:[1]闽南师范大学数学与统计学院,福建漳州363000
出 处:《广西师范大学学报(自然科学版)》2024年第6期177-185,共9页Journal of Guangxi Normal University:Natural Science Edition
基 金:国家自然科学基金(11571159);福建省自然科学基金(2017J01562)。
摘 要:本文考虑一类含参数且具有两项分数阶导数的Caputo型非零边值的分数阶微分方程问题。首先,借助拉普拉斯变换构造Green函数,将边值问题转化为等价的第二类Fredholm积分方程;然后,利用Green函数的性质、Guo-Krasnoselskii不动点定理和Leggett-Williams不动点定理,得到边值问题正解的存在性、不存在性以及多重性的充分条件;接着,将一般分数阶微分方程边值问题正解存在性的结果推广到含有两项分数阶导数的边值问题,得到更丰富的结论;最后,通过实例论证所得结论的正确性。A class of parametric boundary value problems with two-term fractional derivatives and non-zero boundary values is investigated in this paper.Firstly,Green’s function is constructed by Laplace transform,and the boundary value problem is transformed into the equivalent second kind of Fredholm integral equation.Secondly,by using the properties of Green’s function,Guo-Krasnoselskii fixed point theorem and Leggett-Williams fixed point theorem,sufficient conditions for the existence,nonexistence and multiplicity of positive solutions for boundary value problems of fractional differential equations are obtained.Thirdly,the existence of positive solutions for boundary value problems of usual fractional differential equations is extended to boundary value problems with two fractional derivatives.Finally,an example is given to illustrate the feasibility of the obtained results.
关 键 词:两项分数阶导数 边值问题 Guo-Krasnoselskii不动点定理 LEGGETT-WILLIAMS不动点定理 正解的存在性
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.51