检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴秋实 郭杰[1] 康振亮 张宝超 王浩凝 唐胜景[1] WU Qiushi;GUO Jie;KANG Zhenliang;ZHANG Baochao;WANG Haoning;TANG Shengjing(School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China;Shanghai Electro-Mechanical Engineering Institute,Shanghai 201109,China)
机构地区:[1]北京理工大学宇航学院,北京100081 [2]上海机电工程研究所,上海201109
出 处:《北京航空航天大学学报》2024年第12期3872-3883,共12页Journal of Beijing University of Aeronautics and Astronautics
基 金:上海航天科技创新基金(SAST201711)。
摘 要:针对无人机(UAV)集群海上作战态势复杂、作战任务多样、作战单元异构的特点,建立了海上无人机集群多目标任务分配优化模型,并针对该模型提出了一种基于γ随机搜索策略的改进离散粒子群算法(γ-DPSO)。将作战态势细节与复杂作战需求等引入无人机集群任务分配问题,建立契合作战场景的无人机集群任务分配作战模型;基于粒子编码矩阵,设计均衡搜索策略、γ随机搜索策略、分阶段自适应参数,提出基于γ随机搜索策略的改进离散粒子群算法,解决离散粒子群算法易陷入局部最优造成未成熟收敛的问题。仿真结果表明:针对所建立的符合海上作战特点的无人机集群多目标任务分配优化模型,所提算法可有效解决无人机集群多目标任务分配问题,所提改进策略提高了算法的收敛速度与算法精度。In view of the characteristics of complex maritime combat situations,diverse combat missions,and heterogeneous combat units of unmanned aerial vehicle(UAV)clusters,a multi-objective mission assignment optimization model for maritime UAV clusters was established,and an improved discrete particle swarm optimizationγalgorithm based on random search strategy(γ-DPSO)was proposed for this model.Firstly,the combat situation details and complex combat requirements were introduced into the mission assignment problem of UAV clusters,and a mission assignment combat model of UAV clusters that fitted the combat scenario was established.Secondly,basedγon the particle coding matrix,the equilibrium search strategy,the random search strategy,and the phased adaptiveγparameters were designed,and the improved discrete particle swarm optimization algorithm based on the random search strategy was proposed to solve the problem that the discrete particle swarm optimization algorithm was easy to fall into local optimum and caused immature convergence.The simulation results show that the proposed improved algorithm can effectively solve the multi-objective mission assignment problem of UAV clusters for the multi-objective mission assignment optimization model of UAV clusters established in this paper that meets the characteristics of maritime combat,and the proposed improved strategy improves the convergence speed and accuracy of the algorithm.
关 键 词:无人机 协同任务分配 离散粒子群算法 随机搜索策略 均衡搜索策略
分 类 号:V279[航空宇航科学与技术—飞行器设计] TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117