检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王艳平[1] 韩晓冰[1] WANG Yanping;HAN Xiaobing(College of Science,Liaoning University of Technology,Jinzhou 121001,China)
出 处:《控制工程》2024年第12期2190-2195,共6页Control Engineering of China
摘 要:汽车主动悬架系统中的传感器损坏后采集的信号会对系统的控制效果产生不良影响。因此,提出了基于卷积神经网络(convolutional neural network,CNN)的传感器故障诊断算法。根据高度传感器在3种不同损坏状态下所采集的数据,选取各周期内的训练样本数据,并保留一定数量的测试样本。结合基于CNN的传感器故障诊断算法,使用训练样本对神经网络进行训练,然后输入测试样本对神经网络的准确率进行测试,验证了卷积神经网络在高度传感器的故障诊断方面的准确性。并使用同样的数据对反向传播神经网络(back propagation neural network,BPNN)进行训练和测试。通过对诊断结果准确率的比较可知,CNN在汽车主动悬架高度传感器信号故障诊断方面具有明显优势,诊断准确率达到99.31%。The signal collected by a damaged sensor of active suspension system will adversely affect the control effect of the system.Therefore,a sensor fault diagnosis algorithm based on convolutional neural network(CNN)is proposed.Using the data collected by the height sensor under three different damage states,the data in each cycle are selected as training samples,and a number of test samples are retained.Combined with the sensor fault diagnosis algorithm based on CNN,the neural network is trained with training samples,and then the accuracy of the neural network is tested with test samples,which verifies the accuracy of convolution neural network in the fault diagnosis of height sensors.Besides,the same data is used to train and test the back propagation neural network(BPNN).After comparing the accuracy of diagnosis results,CNN has obvious advantages in the signal fault diagnosis of automotive active suspension height sensor,and the diagnosis accuracy reaches 99.31%.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.137.198.25