A Generative Model-Based Network Framework for Ecological Data Reconstruction  

在线阅读下载全文

作  者:Shuqiao Liu Zhao Zhang Hongyan Zhou Xuebo Chen 

机构地区:[1]School of Electronic and Information Engineering,University of Science and Technology Liaoning,Anshan,114051,China [2]School of Computer Science and Software Engineering,University of Science and Technology Liaoning,Anshan,114051,China

出  处:《Computers, Materials & Continua》2025年第1期929-948,共20页计算机、材料和连续体(英文)

基  金:supported by the Fundamental Research Funds for the Liaoning Universities(LJ212410146025).

摘  要:This study examines the effectiveness of artificial intelligence techniques in generating high-quality environmental data for species introductory site selection systems.Combining Strengths,Weaknesses,Opportunities,Threats(SWOT)analysis data with Variation Autoencoder(VAE)and Generative AdversarialNetwork(GAN)the network framework model(SAE-GAN),is proposed for environmental data reconstruction.The model combines two popular generative models,GAN and VAE,to generate features conditional on categorical data embedding after SWOT Analysis.The model is capable of generating features that resemble real feature distributions and adding sample factors to more accurately track individual sample data.Reconstructed data is used to retain more semantic information to generate features.The model was applied to species in Southern California,USA,citing SWOT analysis data to train the model.Experiments show that the model is capable of integrating data from more comprehensive analyses than traditional methods and generating high-quality reconstructed data from them,effectively solving the problem of insufficient data collection in development environments.The model is further validated by the Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS)classification assessment commonly used in the environmental data domain.This study provides a reliable and rich source of training data for species introduction site selection systems and makes a significant contribution to ecological and sustainable development.

关 键 词:Convolutional Neural Network(CNN) VAE GAN TOPSIS data reconstruction 

分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象