检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王凌翔 张莉[1] WANG Lingxiang;ZHANG Li(School of Computer Science and Technology,Soochow University,Suzhou 215008)
机构地区:[1]苏州大学计算机科学与技术学院,苏州215008
出 处:《模式识别与人工智能》2024年第11期986-998,共13页Pattern Recognition and Artificial Intelligence
基 金:江苏省六大人才高峰项目(No.XYDXX-054)资助。
摘 要:皮肤镜图像识别能区分皮肤病变,有助于皮肤癌的早期诊断.为了提高皮肤镜图像识别效率,文中提出面向皮肤镜图像识别的内卷胶囊网络(Involutional Capsule Network,InvCNet),融合内卷操作和全局注意力机制(Global Attention Mechanism,GAM),并去除重构部分.内卷操作融合特征图在通道上的信息,提供丰富的细节,增强皮肤镜图像特征.GAM减轻卷积和池化操作引起的空间信息损失,放大跨维度交互.在4个皮肤镜图像数据集上的实验表明,InvCNet大幅减少网络参数量,并在多数数据集上性能较优.Dermoscopy image recognition can distinguish skin lesions and it is helpful for the early diagnosis of skin cancer.To enhance the efficiency of dermoscopy image recognition,an involutional capsule network(InvCNet)is proposed.InvCNet combines an involutional operation and a global attention mechanism(GAM),while the reconstruction part is removed.The involution operation provides rich minutiae to enhance the dermoscopy image features by fusing information of feature maps across channels.Meanwhile,GAM is employed to mitigate the loss of spatial information induced by the convolution and pooling operations and amplify the cross-dimensional interactions.Experiments on four public datasets demonstrate that InvCNet significantly reduces the number of network parameters while achieving superior performance on most datasets.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30