基于自触发机制的无人车辆分布式编队控制算法研究  

Distributed Formation Control with Self-triggering Mechanism for Unmanned Vehicles

在线阅读下载全文

作  者:邹丹 夏雪蛟 韩金 李志伟 向南 ZOU Dan;XIA Xuejiao;HAN Jin;LI Zhiwei;XIANG Nan(Intelligent Science&Technology Academy Limited of CASIC,Beijing 100041,China;School of Mechanical Engineering,Beijing Institute of Technology,Beijing 100081,China)

机构地区:[1]航天科工集团智能科技研究院有限公司,北京100041 [2]北京理工大学机械与车辆学院,北京100081

出  处:《无人系统技术》2024年第6期103-112,共10页Unmanned Systems Technology

摘  要:针对地面无人车辆分布式协同编队系统横纵向耦合的复杂非线性模型及控制误差较大的问题,开展了地面无人车辆分布式协同编队的控制技术研究。首先,构建了多智能体一致性协同控制框架,建立了车辆非线性运动学、通信拓扑、队形误差、车辆编队预测模型。其次,提出了一种多目标优化的分布式模型预测控制器,其中每个车辆只需要在单个控制周期内获取一次其相邻车辆的预测状态。然后,为了进一步优化编队通信成本对控制器完成改进,实现了基于自触发机制的分布式模型预测编队控制器。最后,对所建立的控制器进行了基于ROS和V-rep的仿真试验。仿真试验结果表明该自触发的分布式模型预测控制器有着良好的稳定性和控制精度,编队平均控制误差精度提高了9.35%。Aiming at the complex nonlinear model of horizontal and longitudinal coupling and the large control error of distributed cooperative formation system of unmanned vehicles on the ground,the control technology of distributed cooperative formation of unmanned vehicles on the ground is studied.Firstly,the multi-agent consistent cooperative control framework is constructed,and the vehicle nonlinear kinematics,communication topology,formation error and vehicle formation prediction models are established.Secondly,a distributed model predictive controller with multi-objective optimization is proposed,in which each vehicle only needs to obtain the predicted state of its neighboring vehicles once in a single control cycle.Then,in order to further optimize the cost of formation communication to improve the controller,a distributed model predictive formation controller based on self-triggering mechanism is implemented.Finally,the simulation test of the controller based on ROS and V-rep is carried out.The simulation results show that the self-triggered distributed model predictive controller has good stability and control accuracy,and can realize formation control with small error.

关 键 词:无人驾驶车辆 多车编队 分布式模型预测控制 协同控制 自触发机制 控制精度 

分 类 号:TP242.6[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象