检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张凯 郝康将 刘卓昆 彭甫镕 李国栋 ZHANG Kai;HAO Kangjiang;LIU Zhuokun;PENG Furong;LI Guodong(Information Center of Jinneng Holding Equipment Manufacturing Group,Jincheng 048000,China;Institute of Big Data Science and Industry,Shanxi University,Taiyuan 030006,China;Martin de Tours School of Management and Economics,Assumption University,Samut Prakan 10270,Thailand;School of Materials Science and Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China)
机构地区:[1]晋能控股装备制造集团信息中心,山西晋城048000 [2]山西大学大数据科学与产业研究院,山西太原030006 [3]泰国易三仓大学马丁德图尔管理与经济学院,泰国北榄府10270 [4]太原科技大学材料科学与工程学院,山西太原030024
出 处:《煤炭工程》2024年第12期169-175,共7页Coal Engineering
基 金:国家自然科学基金面上项目(62276162);中央引导地方科技发展资金(YDZJSX20231B001)。
摘 要:为解决煤矿煤炭传送过程中,操作人员因失误、疲劳导致防冻液喷洒不足或过量,致使煤炭与传送带粘连或打滑,进而造成生产事故的问题,研发了一种基于视觉监控的煤矿传送带防冻液自动喷洒系统。通过边缘算法对现场传送带图像的检测识别与分类,系统对防冻液阀门下达远程控制指令,完成防冻液的自动喷洒。引入一种基于u-net的图像数据增强方法(U-NHME)对原数据集样本进行增强,然后采用YOLO-V7作为网络进行目标定位与识别,实现了全天候室外图像的准确识别。采用Map等评价指标对不同煤量的图像进行增强、训练与识别。实验结果表明,相比YOLO-V7原始网络,本研究算法的识别精度提高了2百分点,提高了传送带煤量识别精度。Aiming at the insufficient or excessive antifreeze spraying due to manual operation during coal transmission in coal mines,resulting in the adhesion or slippage of coal on conveyor belts,and then causing production accidents,an automatic antifreeze spraying system for coal mine conveyor belts based on visual monitoring is developed.Through the detection,recognition and classification of on-site conveyor belt images by edge algorithms,the system issues remote control instructions to the antifreeze valve to complete the automatic spraying of antifreeze.A u-net-based image data augmentation method(U-NHME)is introduced to augment the original dataset samples,and then YOLO-V7 is used as the network for target localization and recognition,so as to achieve accurate recognition of all-weather outdoor images.Map and other evaluation indexes are used to enhance,train and recognize images with different coal quantities.Experimental results show that,compared with the original YOLO-V7 network,the recognition accuracy of the proposed algorithm is 2 percentage points higher,and the recognition accuracy of conveyor belt coal quantity is improved.The system is highly reliable and scalable,bringing a more efficient,safe and environmentally friendly production method to the coal industry.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28